

UKMED Project P32 What factors predict doctors' successful completion of core training in medicine and anaesthetics and their subsequent decisions to pursue higher specialist training?

Project Report

Tom Gale, Paul Lambe, Martin Roberts

November 2018

Contents

1	Exe	cutive Summary	4
	1.1	Successful completion of core medical training	4
	1.2	Applied for higher-level medical specialty training	5
	1.3	Accepted higher-level medical specialty training post	6
	1.4	Successfully completed core anaesthesia training	6
	1.5	Applied higher-level anaesthesia specialty training	7
	1.6	Accepted higher-level anaesthesia specialty training post	7
	1.7	Conclusions	
2		oduction	
3	Me	thods	
	3.1	Data, study population and variables	
	3.2	Statistical Analysis	.11
4	Res	ults: Successfully completed core medical training	.12
	4.1	Descriptive statistics	
	4.2	Bivariate analyses	.12
	4.3	Model 1a: Successfully completed core medical training (all doctors)	.12
	4.4	Model 1b: Successfully completed core medical training (excludes doctors who	
	attend	ded non-UK medical schools)	.14
5	Res	ults: Higher-level medical specialty training	
	5.1	Descriptive statistics	
	5.2	Bivariate analyses	.15
	5.3	Model 2a: Applied higher-level medical specialty training (all doctors)	.15
	5.4	Model 2b: Applied to higher-level medical specialty training (excludes doctors w	
		ded non-UK medical schools)	
	5.5	Model 3a: Accepted higher-level medical specialty training post (all doctors)	
	5.6	Model 3b: Accepted higher medical specialty training post (excludes doctors who	
~		ded non-UK medical schools)	
6		ults: Successfully completed core anaesthesia training	
	6.1	Descriptive statistics	
	6.2	Bivariate analyses	
	6.3	Model 4a: Successfully completed core anaesthesia training (all doctors)	.18
	6.4 docto	Model 4b: Successfully completed core anaesthesia specialty training (excludes	10
7		rs who attended non-UK medical schools)	
7		ults: Higher-level anaesthesia specialty training	
	7.1	Descriptive statistics	.20

	7.2	Bivariate analyses	.20
	7.3	Model 5a: Applied higher-level anaesthesia specialty training (all doctors)	.21
	7.4	Model 5b: Applied higher-level anaesthesia specialty training (excludes doctors	
	who	attended non-UK medical schools)	.21
	7.5	Model 6a: Accepted a higher-level anaesthesia specialty training post (all	
	docto	ors)	.22
	7.6	Model 6b: Accepted a higher-level anaesthesia specialty training post (excludes	
	docto	ors who attended non-UK medical schools)	.22
8	Tal	bles	.23
9		ures	
1() (Limitations	.75
11	1 (Conclusions and further research	.76
12	2	Acknowledgements	.77
13	3 I	References	.78

5

1 Executive Summary

The aim of the study was to identify factors that predict doctors' successful completion of core training in medicine and anaesthesia and their subsequent decisions to pursue higher specialty training in cognate medical specialties or anaesthesia respectively. We ran binary logistic regression models to predict six outcomes, which were whether or not a doctor:

- (i) in core medical training (CMT) successfully completed that training,
- (ii) who completed CMT applied to higher training in one of 25 cognate medical specialties¹,
- (iii) who applied to higher training in one of the cognate medical specialties accepted a post
- (iv) in core anaesthesia training successfully completed that training
- (v) who completed core anaesthesia training applied to higher anaesthesia training,
- (vi) who applied to higher anaesthesia training accepted a post

The models included a range of sociodemographic and educational background factors as potential predictors of these outcomes. Because of the extent of missing data on certain variables for doctors who had attended non-UK medical schools each model was run on two data sets: first, all doctors meeting the criteria in (i) to (vi) above and second, the subsample of those doctors who had attended medical school in the UK.

1.1 Successful completion of core medical training

The factors influencing doctors' successful completion of core medical training (CMT) included: level of entry to the study of medicine (graduate versus non-graduate), medical school attended, CMT Deanery where training took place, CMT Shortlisting score, CMT Interview score and whether a doctor's core medical training was part-time or full time.

For the whole sample of doctors, including those who attended non-UK medical schools

- The odds of successful completion for graduate entrants were 0.5 times the odds of non-graduate entrants.
- There was significant variation in the odds of successful completion among medical schools and among CMT deaneries where training took place.
- CMT Shortlisting score and CMT Interview score were positively associated with successful completion of core medical training.
- For a standard deviation increase in CMT Shortlisting score the odds of successful completion increased by 24.92%

¹ Acute Internal Medicine, Allergy, Audio Vestibular Medicine, Cardiology, Clinical Genetics, Clinical Neurophysiology, Clinical Pharmacology and Therapeutics, Combined Infection Training, Dermatology, Endocrinology and Diabetes Mellitus, Gastroenterology, Genito-urinary Medicine, Geriatric Medicine, Haematology, Infectious Diseases, Medical Oncology, Medical Ophthalmology, Neurology, Nuclear Medicine, Palliative Medicine, Rehabilitation Medicine, Renal Medicine, Respiratory Medicine, Rheumatology, Sports and Exercise Medicine

- For a standard deviation increase in CMT Interview score the odds of successful completion increased by 45.0%.
- Across all levels of CMT Shortlisting score and all levels of CMT Interview score, nongraduate entrants to medical school had a higher predicted probability of successful completion than graduate entrants.
- Across all levels of CMT Shortlisting score and all levels of CMT Interview score, nongraduate entrants to UK medical schools had the highest predicted probability of successful completion and graduate entrants to non-UK medical schools the lowest predicted probability of successful completion.
- The odds of successful completion for doctors whose core medical training was parttime were 0.2 times the odds of doctors who trained full=time.

For the subsample of doctors who attended UK medical schools

- The odds of successful completion for graduate entrants were 0.5 times the odds of non-graduate entrants.
- The odds of successful completion for BME doctors were 0.7 times those of white doctors.
- Doctors who at entry to medical school had lived in areas of the lowest rate of young persons' participation in Higher Education (POLAR 1) were more likely to successfully complete core medical training than doctors from areas of higher rates of young persons' participation in Higher Education (POLAR 2-5).
- There was significant variation in the odds of successful completion among medical schools and among CMT deaneries where training took place.
- The influence of medical degree entry level, ethnicity and POLAR on the probability of successful completion attenuated as CMT Shortlisting score increased and as CMT Interview score increased.
- The odds of successful completion for doctors whose core medical training was parttime were 0.2 times the odds of doctors who trained full=time.

1.2 Applied for higher-level medical specialty training

The factors influencing doctors' decision to apply for higher-level medical specialty training included: medical school attended, whether a not a doctor had intercalated at medical school, Foundation School Deanery attended, CMT Shortlisting score and CMT Interview score.

For the whole sample of doctors including those who attended non-UK medical schools

- There was significant variation in the odds of applied among medical schools and among foundation schools.
- The odds of having applied for doctors who had intercalated were 1.6 times the odds of doctors who had not intercalated.

For the subsample of doctors who attended UK medical schools

- There was significant variation in the odds of applied among medical schools and among foundation schools.
- The odds of having applied for doctors who had intercalated were 1.8 times the odds of doctors who had not intercalated.
- CMT Shortlisting score and CMT Interview score were negatively associated with the probability of having applied for higher-level medical specialty training.
- Even when adjusted by intercalation, the odds of having applied decreased as CMT Shortlisting score increased and as CMT Interview score increased.

1.3 Accepted higher-level medical specialty training post

For the whole sample of doctors, including those who attended non-UK medical schools and the subsample of doctors who attended UK medical schools

• None of the sociodemographic, educational and institutional background factors examined were predictive of having accepted a higher-level medical specialty training post.

1.4 Successfully completed core anaesthesia training

The factors influencing doctors' successful completion of core anaesthesia training included; gender, level of entry to the study of medicine (graduate versus non-graduate), medical school, Foundation School Deanery, anaesthesia HE Training Deanery, and interview score.

For the whole sample of doctors including those who attended non-UK medical schools

- The odds of successful completion for male doctors were 1.4 times the odds for female doctors.
- The odds of successful completion for graduate entrants were 0.5 times the odds for non-graduate entrants.
- There was significant variation in the odds of successful completion among medical schools, foundation schools and HE deaneries where training took place.
- Interview score was positively associated with successful completion and for a standard deviation increase in interview score the odds of successful completion increased by 48%.
- Across all levels of interview score, male non-graduate entrants to UK medical schools had the highest probability of successful completion, and female graduate entrants to non-UK medical schools the lowest probability of successful completion.
- Part-time training was not significantly associated with successful completion.

For the subsample of doctors who attended UK medical schools

• The odds of successful completion for male doctors was 1.4 times the odds for female doctors.

- The odds of successful completion for graduate entrants to medical school were 0.5 times the odds of non-graduate entrants.
- There was significant variation in the odds of successful completion among foundation schools and HE deaneries where training took place.
- Interview score was positively associated with successful completion and for a standard deviation increase in interview the odds of successful completion increased by 54%.
- Male, non-graduate entrants to medical school had the highest probability of successful completion and female graduate entrants the lowest probability of successful completion.
- Part-time training was not significantly associated with successful completion.

1.5 Applied higher-level anaesthesia specialty training

The only factor influencing doctors' decision to apply for higher-level anaesthesia specialty training was HE Training Deanery attended.

• The odds of having applied for higher-level anaesthesia specialty training varied by the HE Training Deanery attended.

1.6 Accepted higher-level anaesthesia specialty training post

For the whole sample of doctors, including those who attended non-UK medical schools, and the subsample of doctors who attended UK medical schools

• None of the sociodemographic, educational and institutional background factors examined were predictive of having accepted a higher-level anaesthesia specialty training post.

1.7 Conclusions

There is a significant amount of attrition of the numbers of doctors who enter core training in medicine or anaesthesia, with those completing training and subsequently applying for higher level training posts in those specialties.

Common educational factors which predicted completion of core training in both medicine and anaesthesia were; graduate versus non-graduate entry to medical school, medical school attended and training Deanery attended. Part-time training was associated with lower odds of completing training for medicine but not anaesthesia.

There were differences in the socio-demographic factors associated with completion of training for medicine and anaesthesia. In core medical training BME doctors were 0.7 times as likely as white doctors to complete training, but doctors who at entry to medical school

had lived in POLAR 1 were more likely to complete core training. For anaesthesia, the only socio-demographic factor associated with completion of core training was gender.

Selection processes to core training in medicine and anaesthesia work well in predicting those trainees that will complete the core training programme with strong associations between interview score and likelihood of successful completion of training in medicine and anaesthetics. Although shortlisting and interview scores predicted successful completion of core medical training, these scores had an inverse relationship with the odds of applying to higher training in medicine.

For trainees who had completed core medical training, those who had intercalated during medical school were more likely to apply and there were significant associations between medical school and foundation school attended. For anaesthesia, the only factor associated with the odds of applying for ST3 posts after completion of core training, was the HE training deanery attended. For those applicants who were offered posts to higher training in medicine and anaesthetics, none of the socio-demographic or educational factors investigated were associated with decisions to accept these posts.

2 Introduction

Core training programmes for medicine and anaesthesia have high fill rates for CT1 entry compared to other specialties. However, these specialties suffer from below optimal conversion rates between core and higher specialty training posts.[1] As a result, there are many unfilled posts at entry to higher (ST3 level) specialty training in medicine and anaesthetics. The Centre for Workforce Intelligence (CfWI) has identified an urgent need to increase the number of ST3 posts, and to model the way in which the output from core and Acute Care Common Stem (ACCS) training posts flows into higher specialty training and specialty training posts in these specialties, and factors that predict successful appointment to higher specialty training.

The main aim of our study is to identify factors that predict doctors' successful completion of core training in medicine and anaesthesia and their subsequent decisions to pursue higher specialty training. Previous work has investigated trainees' perceptions regarding the weighting of individual and job-related factors influencing choice and selection to specialty training posts, but there is limited longitudinal research investigating factors which predict successful completion of training.[4] A large longitudinal prospective study, identified that previous academic attainment predicts undergraduate attainment in pre-clinical and clinical years of a medical degree, but sociodemographic factors are also important predictors of future clinical performance.[5]

The UKMED database provides a unique opportunity to investigate the contribution of a number of sociodemographic and educational background factors that predict successful completion of core training in medicine and anaesthesia, and successful progression to higher specialty training.

3 Methods

3.1 Data, study population and variables

The anonymised data for this study were provided by the UKMED Development Group and accessed remotely by the authors via the Health Informatics Centre Safe Haven at Dundee University (<u>https://www.dundee.ac.uk/hic/hicsafehaven/</u>). The UKMED Data Dictionary (<u>http://www.ukmed.ac.uk/documents/UKMED data dictionary.pdf</u>) describes the available data. Within the available data the earliest training year in which doctors had entered core training posts was 2012-13 and the latest training year for which specialty application and ARCP outcome data was available was 2016-17. To allow for natural variation in the time taken to complete core training we therefore restricted our analyses to doctors who had accepted core training posts during the years 2012 to 2014. The four samples used in our analyses were as follows.

- 1. Core medical training sample: 3720 doctors who had accepted a training post that commenced in the years 2012 to 2014.
- 2. Higher-level medical specialty training sample: the 2633 doctors in Sample 1 who successfully completed their training.
- 3. Core anaesthesia training sample: 1577 doctors who had accepted a training post that commenced in the years 2012 to 2014.²
- 4. Higher-level anaesthesia specialty training sample: 858 of the doctors who had accepted a core training post that commenced in the years 2013 or 2014 (but not 2012) and who had successfully completed their training. We excluded the 2012 starters because of missing data on applications to higher-level anaesthesia training prior to 2015.

3.1.1 Outcomes

For doctors who had participated in core medical training and doctors who had participated in core anaesthesia training we investigated the following binary outcomes:

- 1. Whether or not the doctor successfully completed core training
- 2. Whether or not doctors who had successfully completed core medical training subsequently applied for higher-level medical specialty training
- 3. Whether or not doctors who had successfully completed core medical training and subsequently applied for higher-level medical specialty training accepted a post
- 4. Whether or not doctors who had successfully completed core anaesthesia training subsequently applied for higher-level anaesthesia specialty training
- 5. Whether or not doctors who had successfully completed core anaesthesia training and subsequently applied for higher-level anaesthesia specialty training accepted a post

We investigated the above outcomes in respect of samples (a) all doctors, and (b) only doctors who had attended UK medical schools.

3.1.2 Independent variables

Independent variables included a range of background factors: personal, family, academic, medical school and foundation school attended, and HE deanery where higher specialty training took place (see Table 1 and

² Including those doctors on the three-year Acute Care Common Stem (ACCS) Anaesthesia pathway.

Table 2 for frequencies and missing values for the samples of doctors who participated in core medical training and core anaesthesia training respectively).

We used the higher-level ethnicity indicator BME (*Asian or Asian British, Black or Black British, Mixed, Other Ethnic Group* versus *White, Other white background*) rather than the more granular 5-category classification of ethnicity that was also provided in the UKMED data set. We used BME due to the small cell sizes encountered when ethnicity and other multinomial categorical variables were analysed in the same regression models. For similar reasons we dichotomised three further variables into a yes/no format: disability, 'UK educated' and EPM score. 'UK educated' indicated doctors who had completed their pre-medical school education, including secondary school and any undergraduate degrees, in the UK. EPM outcomes in the data set were recorded for some as decile scores (34 to 43) and for others as quartiles, thus we recoded EPM outcomes as top two quarters (EPM decile scores 39 to 43) versus bottom two quarters (EPM decile scores 34 to 38).

3.2 Statistical Analysis

Univariate analyses were carried out to identify missing, unexpected and outlying values and to assess the data for normality of distribution. Given the extent of missing values on some of the observations used in this study and the consequent potential for biased estimates, we had to confront the issue of whether to impute values or not. Two approaches are commonly used by researchers: either the list-wise deletion method, which omits cases with missing values and conducts multivariable analysis only on cases with a complete set of values on the variables in a model, or the use of imputation methods to create a synthetic 'complete' data set by allocating values on missing observations.[6] However, it is widely accepted that methods of imputation make assumptions about data which are often violated and that imputation may therefore lead to biased estimates of unpredictable direction.[7,8] Opinions are divided in the research community as to the best approach to dealing with missing values and researchers are faced with a choice between bias from list-wise deletion and bias from imputation. We have taken the former option.

Bivariate tests of association (Fisher's Exact Test, Pearson's chi-squared test and univariate logistic regression as appropriate) between each potential predictor and the outcome of interest (specialty application) were used to inform the construction of multivariable logistic regression models. List-wise deletion excluded cases in which there were missing values for any of the variables in the regression model. Variables that were non-significant in bivariate analyses or which were non-significant in multivariable models and caused substantial reduction in the size of the analysis sample were removed from the models. This strategy was aimed at determining the most parsimonious models.

Model goodness of fit was assessed using the Hosmer-Lemeshow test with a p-value greater than 0.05 taken to indicate acceptable fit. [9] The significance of the effect of individual predictor variables was assessed using a z-test (Wald Test computed as a chi-squared test)

with a p-value less than 0.05 taken to indicate statistical significance.[10] The quality of model classification (sensitivity and specificity of predicted outcomes) was assessed using receiver operating characteristic (ROC) diagnostics.[11] The adequacy of model sample size was assessed using the formula $N = 10 \times k/p$, where p is the proportion of negative or positive cases (whichever smallest) in the population and k the number of independent variables, to indicate the minimum number of cases required.[12]

Some interaction effects of particular interest were examined and, finally the modelling results interpreted in relation to the aims of the study. Methods of interpretation were based on predicted probabilities. Typologies, based on profiles of values for the independent variables in a model enabled insight into which configuration of variables were substantively important in influencing the outcome. We used Stata version 15 for all analyses.

4 Results: Successfully completed core medical training

4.1 Descriptive statistics

Overall, 71% (2633/3720) of doctors in the sample successfully completed their core medical training. Rates of successful completion varied by medical school (57% to 86% for UK medical schools and 46% for non-UK medical schools; Table 3), by Foundation School Deanery (56% to 86%; Table 3) and by HE Deanery where the training took place (59% to 97%; Table 4).

4.2 Bivariate analyses

Bivariate tests of association revealed statistically significant associations between the outcome 'successfully completed core medical training' and many of the independent variables (Table 1, final column).

Significant variables were included in exploratory multivariable logistic regression models. However, due to the level of missing values on sociodemographic and educational background variables collected on entry to medical school, and variables measuring performance at medical school in respect of those who had not studied at UK medical schools (see Table 1), these variables were excluded from model 1 due to their effect on sample size.

4.3 Model 1a: Successfully completed core medical training (all doctors)

The analytic sample (n=3296) comprised doctors who had participated in core medical training of which 376 were graduates on entry to medical school and 245 had studied at a non-UK medical school. Predictors included in the final model were: Graduate on Entry, Medical School, Foundation School Deanery, HE Training Deanery, CMT Short Listing score CMT Interview score and Part-time core medical training.

A Hosmer-Lemeshow test confirmed adequate model fit and Wald tests that Graduate on Entry, Medical School, HE Training Deanery, CMT Short Listing score, CMT Interview score and Part-time core medical training each had a significant effect on the outcome successfully completed core medical training, whilst Foundation School Deanery was non-significant (Table 5).

4.3.1 Odds Ratios

The odds of successful completion of core medical training for Graduate entrants to medical degree programmes were 0.55 times the odds for non-graduate entrants (Table 6). Variation among medical schools was clearly illustrated when the predicted probabilities of successful completion of core medical training were plotted (Figure 1). The odds of successful completion of core medical training for those who trained part-time were 0.21 times those who trained full-time. Compared to non-UK medical schools (reference category) the odds of successful completion were significantly greater for doctors who had studied at 7 (Table 6) of the UK medical schools (odds ratios ranging from 2.3 to 6.7). However, there was no significant difference in the odds of successful completion between non-UK medical schools and the remaining UK medical schools (Table 6).

Variance among HE deaneries where training took place was clearly illustrated when the predicted probabilities of successful completion of core medical training were plotted (Figure 2). Compared to HE Thames Valley (reference category) the odds of successful completion were significantly lower for all other deaneries (Table 6).

For a standard deviation increase in CMT short-listing score (SD=11.2 points) the odds of successful completion of core medical training increased by 24.9%, and for a standard deviation increase in CMT interview score (SD=5.7 points) the odds of successful completion of core medical training increased by 45.0%.

When contrasted by UK versus non-UK medical school, by graduate and non-graduate entry, adjusted by CMT Short-listing score there were clear differentials in the predicted probability of successful completion of core medical training (Figure 3). Across all levels of CMT Short-listing score non-graduate entrants to UK medical schools had the highest probability of success and graduate entrants to non-UK medical schools the lowest probability of success. Interestingly there was little difference between graduate entrants to UK medical schools and non-graduate entrants to non-UK medical schools (Figure 3).

When contrasted by UK versus non-UK medical school, by graduate and non-graduate entry, adjusted by CMT Interview score there were clear differentials in the predicted probability of successful completion of core medical training (Figure 4). Across all levels of interview score non-graduate entrants to UK medical schools had the highest probability of success and graduate entrants to non-UK medical schools the lowest probability of success. Once again there was little difference between graduate entrants to UK medical schools and non-graduate entrants to non-UK medical schools (Figure 4).

4.3.2 Typologies

The mean predicted probability (scale of 0 to 1) of successful completion of core medical training for doctors at UK and non-UK medical schools was 0.77, (Standard Deviation = 0.16, Table 5, Model 1a). However, holding all other predictors in the model at their mean, the predicted probability for a doctor who had been a graduate entrant to a non-UK medical school was 0.37, and that for a non-graduate entrant to a non-UK medical school was 0.53. In contrast, the predicted probability of their counterpart graduate and non-graduate entrants to UK medical schools was 0.73 and 0.84 respectively (Table 7).

4.4 Model 1b: Successfully completed core medical training (excludes doctors who attended non-UK medical schools).

The analytic sample (n=2709) comprised doctors who had attended and obtained their Primary Medical Qualification at a UK medical school. Predictors included in the final model were: Part-time core medical training, POLAR, Disability, BME, Intercalated, Graduate Entry, Medical School attended, Foundation School Deanery, HE Training Deanery, CMT Short Listing score and CMT Interview score.

A Hosmer-Lemeshow test confirmed adequate model fit and Wald tests that Part-time core medical training, POLAR, BME, Graduate Entry, Medical School attended, HE Training Deanery, CMT Short Listing score and CMT Interview score each had a significant effect on the outcome successfully completed core medical training, whilst Intercalation and Foundation School Deanery attended were non-significant (Table 5).

4.4.1 Odds Ratios

The odds of successful completion of core medical training for Graduate entrants to medical degree programmes were 0.48 times those for non-graduate entrants (

Table 8). The odds of successful completion of core medical training for those who trained part-time were 0.18 times those who trained full-time (Table 8). The odds of successful completion of core medical training for POLAR quintile 2, 3, 4 and 5 were respectively 0.52, 0.46, 0.40 and 0.62 times the odds for doctors from POLAR 1 background (area of lowest rate of HE participation) (

Table 8). The odds of BME doctors were 0.71 times those for white doctors (

Provision and the provision of the provi

Table 8).

For each standard deviation in CMT Short-listing score (SD=10.98) the odds of successful completion of core medical training increased by 24.5%. For each standard deviation in CMT Interview score (SD=5.4) the odds increased by 39%.

Variation among medical schools was clearly illustrated when the predicted probabilities of successful completion of core medical training were plotted (Figure 5) as was variation among HE deaneries where training took place (Figure 6).

Compared to Warwick medical school (reference category) the odds of successful completion of core medical training were significantly lower for 24 medical schools (odds ratios ranging from 0.13 to 0.23), and non-significant for the remainder UK medical schools (

Table 8).

Compared to HE Thames Valley (reference category) the odds of successful completion were significantly different and lower (0.09 to 0.22) for seven other deaneries where training took place and non-significant for all others (

Table 8).

4.4.2 Typologies

The mean predicted probability (scale of 0 to 1) of successful completion of core medical training for doctors who attended UK medical schools was 0.79, (Standard Deviation = 0.16, Table 5, Model 1b). However, holding all other predictors in the model at their mean, the predicted probability for a white doctor from a POLAR quintile 1 (area of lowest rate of HE participation) who had been a non-graduate entrant was 0.92, compared to 0.71 for a BME doctor from a POLAR quintile 5 (area of highest rate of HE participation) who had been a graduate entrant to medical school (Table 9). However, the influence of medical degree entry level (graduate versus non-graduate) ethnicity (BME versus white) and POLAR quintile diminished as CMT Shortlisting score (Figure 7) increased and as CMT Interview score increased (Figure 8).

5 Results: Higher-level medical specialty training

5.1 Descriptive statistics

72% (2633/3720) of doctors who were accepted for core medical training (CMT) from years 2012 to 2014, successfully completed CMT. The sample (n=2633), included 133 doctors who had attended and obtained their Primary Medical Qualification (PMQ) at non-UK medical schools (see

Table 10 for frequencies and missing values on sociodemographic and educational background variables).

5.2 Bivariate analyses

Bivariate tests of association between each outcome and a range of sociodemographic/educational background variables (see

Table 10, end column). Statistically significant predictors were included in exploratory regression models and the most parsimonious final model reported.

5.3 Model 2a: Applied higher-level medical specialty training (all doctors)

68% (1803/2663) of doctors who had successfully completed their core medical training applied to higher-level training in medical specialties. Rates of application varied by medical school attended (48% to 100% for UK medical schools and 76% for non-UK medical schools, Table 11), by Foundation School Deanery (53% to 81%) and by HE Deanery where the CMT training took place (62% to 83%, Table 12).

Predictors included in the final model were: Gender, Graduate on Entry, Intercalated, Medical School, Foundation School Deanery, and HE Training Deanery.

A Hosmer-Lemeshow test confirmed adequate model fit and Wald tests that Intercalated, Medical School, and Foundation School Deanery each had a significant effect on the outcome, applied for higher-level medical specialty training, whilst Gender, Graduate on Entry, and HE Training Deanery were non-significant (Table 13).

5.3.1 Odds Ratios

Variance among medical schools was clearly illustrated when the predicted probabilities of having applied for higher-level medical specialty training were plotted (Figure 9). Compared to non-UK medical schools (reference category), the odds for doctors who had attended nine of the thirty-three UK medical schools were significantly lower, and the odds for the remainder non-significant, Lancaster apart, where all doctors applied (Table 14).

Variance among Foundation Schools was clearly illustrated when the predicted probabilities of having applied for higher-level medical specialty training were plotted (Figure 10). Compared to Black Country/Shropshire Foundation School Deanery (reference category) the odds were significantly lower at ten foundation schools. The odds of having applied for higher-level medical specialty training for doctors who had intercalated at medical school were 1.6 times the odds of doctors who had not intercalated (Table 14).

In summary, the odds of having applied for higher-level medical specialty training varied by medical school and foundation school attended, doctors who had intercalated at medical school were less likely than doctors who had not intercalated. Whilst doctors who had studied at non-UK medical schools were more likely to apply than doctors who had studied at a small number of UK medical schools, in the main there was no significant difference between the two groups.

5.4 Model 2b: Applied to higher-level medical specialty training (excludes doctors who attended non-UK medical schools)

Predictors included in the final model were: Gender, Entry Status, Intercalated, Medical School, Foundation School Deanery, HE Training Deanery, CMT Shortlisting score and CMT Interview score.

A Hosmer-Lemeshow test confirmed adequate model fit and Wald tests that Intercalated, Medical School, Foundation School Deanery, CMT Shortlisting score and CMT Interview score each had a significant effect on the outcome, applied for higher-level medical specialty training, whilst Gender, Entry Status, and HE Training Deanery were non-significant (Table 13).

5.4.1 Odds Ratios

Variation among UK medical schools and Foundation School Deaneries remained the same as reported for model 2a (see Table 14, Figure 9 and Figure 10). The odds of having applied for higher-level medical specialty training for doctors who had intercalated at medical school were 1.8 times the odds for doctors who had not intercalated (OR=1.79, 95% confidence interval 1.3247 to 2.4199, p<0.001). However, the odds decreased by -13% for a standard deviation (SD=10.76) increase in CMT Shortlisting increased (OR=0.98, 0.9762 to 0.9983) and by -10% for a standard deviation (SD=5.07) increase in CMT Interview score (OR=0.97, 0.9614 to 0.9988) (Figure 11).

In summary, the odds of having applied for higher-level medical specialty training varied by medical school and foundation school attended, doctors who had intercalated at medical school were less likely than doctors who had not intercalated, however, for both groups, as CMT Shortlisting score and CMT Interview score increased the likelihood of application decreased.

5.5 Model 3a: Accepted higher-level medical specialty training post (all doctors)

None of the variables listed in

Table 10 were either univariately or multivariately significantly associated with the outcome 'accepted a higher-level medical specialty post.

5.6 Model 3b: Accepted higher medical specialty training post (excludes doctors who attended non-UK medical schools)

None of the variables listed in

Page 24 of 90

Table 10 were either univariately or multivariately significantly associated with the outcome 'accepted a higher-level medical specialty post.

6 Results: Successfully completed core anaesthesia training

6.1 Descriptive statistics

Independent variables included a range of background factors: personal, family, academic, medical school and foundation school attended, and HE deanery where higher specialty training took place (see

Table 2 for frequencies and missing values).

Overall, 78% (1226/1577) of doctors in the sample successfully completed their anaesthesia training. Rates of successful completion varied by medical school attended (53% to 100% for UK medical schools and 56% for non-UK medical schools,

Table 15). Rates of successful completion varied by Foundation School Deanery (61% to 95%,

Page 27 of 90

Table 15) and by HE Deanery where the training took place (67% to 100%, Table 16).

6.2 Bivariate analyses

Bivariate tests of association revealed statistically significant associations between the outcome 'successfully completed anaesthesia training' and many of the independent variables (

Table 2, final column).

Significant variables were included in exploratory multivariable logistic regression models. However, due to the level of missing values on sociodemographic and educational background variables collected on entry to medical school, and variables measuring performance at medical school in respect of those who had not studied at UK medical schools (see Table 2), these variables were excluded from model 4a due to their effect on sample size.

6.3 Model 4a: Successfully completed core anaesthesia training (all doctors).

The analytic sample (n=1464) comprised doctors who had participated in core anaesthetic training of which 272 were graduates on entry to medical school and 38 had studied at a non-UK medical school. Predictors included in the final, most parsimonious, model were: Gender, Graduate Entry, Medical School attended, Foundation School Deanery, Anaesthetics Training Deanery and anaesthetics training Interview score. The predictor Part-time anaesthesia training was non-significant and excluded from the final model.

A Hosmer-Lemeshow test confirmed adequate model fit and Wald tests that Gender, Graduate Entry, Medical School, Foundation School, HE Training Deanery, and Interview score each had a significant effect on the outcome successfully completed core anaesthesia training (Table 17).

6.3.1 Odds Ratios

The odds of successful completion of anaesthesia training for male doctors was 1.4 times those for female doctors, and the odds for doctors who had been graduate entrants to medical degree programmes were 0.48 times the odds for non-graduate entrants (Table 18). Variation among medical schools was clearly illustrated when the predicted probabilities of successful completion of anaesthesia training were plotted (Figure 12). Compared to non-UK medical schools (reference category) the odds of successful completion were significantly greater for doctors who had studied at 10 (highlighted, Table 18) UK medical schools (odds ratios ranging from 3.4 to 8.4). However, there was no significant difference in the odds of successful completion between non-UK medical schools and the remaining UK medical schools (Table 18).

Variance among foundation schools was clearly illustrated when the predicted probabilities of successful completion of anaesthesia training were plotted (Figure 13). Compared to North Yorkshire East (reference category) the odds of successful completion were significantly lower for five foundation schools and for both UK and non-UK medical school graduates with missing values on foundation school status.

Variance among HE deaneries where training took place was clearly illustrated when the predicted probabilities of successful completion of anaesthesia training were plotted (Figure 14). Compared to London South (reference category) the odds of successful completion were significantly lower for all other deaneries, London NCE and London NW apart, which were non-significant (Table 18).

For a standard deviation increase in interview score (SD=22.5 points) the odds of successful completion of core anaesthesia training increased by 48.0%.

When contrasted by UK versus non-UK medical school, by gender, graduate and non-graduate entry, and adjusted by interview score there were clear differentials in the predicted probability of successful completion of anaesthesia training (Figure 15). Across all levels of interview score male non-graduate entrants to UK medical schools had the highest probability of success and female graduate entrants to non-UK medical schools the lowest (Figure 15).

6.3.2 Typologies

The mean predicted probability (scale of 0 to 1) of successful completion of core anaesthesia training was 0.78 (SD = 0.15, Table 17, Model 4a). However, holding all other predictors in the model at their mean, the respective predicted probabilities for female and male doctors who had been graduate entrants to non UK medical schools were 0.36 and 0.44. The respective probabilities for female and male non-graduate entrants to non UK medical schools were 0.54 and 0.62. In contrast, the probabilities for female and male doctors who had been graduate entrants to UK medical schools were 0.69 and 0.75, and 0.82 and 0.86 for non-graduate entrants to UK medical schools (Table 19).

6.4 Model 4b: Successfully completed core anaesthesia specialty training (excludes doctors who attended non-UK medical schools)

The analytic sample (n=2718) comprised doctors who had obtained their Primary Medical Qualification at a UK medical school. Predictors included in the final model were: Gender, BME, Entry Status, Intercalated, Medical School attended, Foundation School Deanery, HE Training Deanery, and Anaesthesia Training Interview score. The predictor Part-time anaesthesia training was non-significant and excluded from the final model.

A Hosmer-Lemeshow test confirmed adequate model fit and Wald tests that Gender, Entry Status, Foundation School Deanery, HE Training Deanery, and Anaesthesia Training Interview score each had a significant effect on the outcome successfully completed anaesthesia training, whilst BME, Intercalated and Medical School attended were non-significant (Table 17).

6.4.1 Odds Ratios

The odds of male doctors having successfully completed anaesthesia training were 1.4 times those of female doctors (Table 20). The odds for graduate entrants to Standard Entry medical degree programmes were 0.54 times those of non-graduate entrants to Standard Entry Programmes ((Table 20). The odds of those on Graduate Entry Programmes were 0.32 times those of non-graduate entrants to Standard Entry Programmes ((Table 20).

For each standard deviation in anaesthesia training Interview score (SD=22.4) the odds of successful completion of anaesthesia training increased by 54%.

Variance among Foundation Schools was clearly illustrated when the predicted probabilities of successful completion of anaesthesia training were plotted (Figure 16) as was variance among HE Deaneries where training took place (Figure 17).

Compared to North Central Thames Foundation School (reference category) the odds of successful completion of anaesthesia training were not significantly different for all other foundation schools, Black Country Shropshire apart ((Table 20).

Compared to HE Thames Valley (reference category) the odds of successful completion of anaesthesia training were significantly lower at 12 HE Deaneries (odds ratios ranging from 0.10 to 0.23) but not significantly different at HE London NCE or HE London NW (Table 20).

6.4.2 Typologies

The mean predicted probability (scale of 0 to 1) of successful completion of anaesthesia training for doctors who obtained their Primary Medical Qualification in the UK was 0.79, (Standard Deviation = 0.14, Table 17, Model 4b). However, holding all other predictors in the model at the mean, the predicted probability for a male, non-graduate entrant to a Standard Entry Programme was 0.88, compared to 0.62 for a female doctor who had been a graduate entrant on a Graduate Entry Programme (Table 21). Non-graduate entrants to Standard Entry Programmes were more likely than graduate entrants to Standard Entry Programmes, both were more likely than those on Graduate Entry Programmes, and across all entry statuses, male doctors were more likely than female doctors (Table 21). However, irrespective of entry status and gender, the probability of successful completion of anaesthesia training increased as Interview score increased (Figure 18).

7 Results: Higher-level anaesthesia specialty training

7.1 Descriptive statistics

The sample comprised 858 doctors, including 14 who had attended non-UK medical schools, and who had been accepted on to the programme during the years 2013 and 2014

Independent variables included a range of background factors: personal, family, academic, medical school and foundation school attended and HE deanery where higher specialty training took place (see Table 22 for frequencies and missing values).

7.2 Bivariate analyses

Bivariate tests of association revealed statistically significant associations between the outcome 'applied for higher-level anaesthesia specialty training and a number of the independent variables (Table 22, final column). Significant variables were included in exploratory multivariable logistic regression models. However, due to the level of missing values on sociodemographic and educational background variables collected on entry to

medical school, and variables measuring performance at medical school, particularly in respect of those who had not studied at UK medical schools (see Table 22), these variables were excluded due to their adverse effect on sample size.

Predictors included in an exploratory model were: Disability, UKPMQ, Medical School, Foundation School Deanery, and Anaesthesia HE Training Deanery. However, as all 14 doctors who had studied at non-UK medical schools had applied (i.e. predicted the outcome perfectly) these cases were automatically dropped from the analytic sample. Thus, the final, and only model reported is model 5b, based on the sample of doctors who attended UK medical schools. Only Foundation School Deanery, and Anaesthesia HE Training Deanery were significant and included in the final model.

7.3 Model 5a: Applied higher-level anaesthesia specialty training (all doctors)

As noted above there was no variation in application amongst the small number of non-UKtrained doctors and so the only model reported is model 5b, based on the sample of doctors who attended UK medical schools.

7.4 Model 5b: Applied higher-level anaesthesia specialty training (excludes doctors who attended non-UK medical schools)

A Hosmer-Lemeshow test confirmed adequate model fit and Wald tests that Anaesthesia HE Training Deanery had a significant effect on the outcome, applied for higher-level anaesthesia specialty training, whilst Foundation School Deanery was non-significant (Table 23).

74% (636/858) of doctors who had successfully completed their core anaesthesia training applied to higher-level anaesthesia training.

Rates of application varied by medical school attended (36% to 100% for UK medical schools and 100% for non-UK medical schools and by Foundation School Deanery (53% to 92%, Table 24) and by HE Deanery where the training took place (56% to 94%, Table 25).

7.4.1 Odds Ratios

Variance among Anaesthesia HE Training Deanery was clearly illustrated when the predicted probabilities of having applied for higher-level medical specialty training were plotted (Figure 19).Compared to HE South West Deanery (reference category), the odds of applied ranged from no difference at HE East Midlands to 11 times greater at Northern Ireland MTDA (26).

In summary, the odds of having applied for higher-level anaesthesia specialty training varied by Anaesthesia HE Training Deanery attended.

7.5 Model 6a: Accepted a higher-level anaesthesia specialty training post (all doctors)

7.6 Model 6b: Accepted a higher-level anaesthesia specialty training post (excludes doctors who attended non-UK medical schools)

In respect of both the above models, none of the factors measuring doctors' sociodemographic and educational background of interest (Table 22) were associated with the outcome accepted a higher-level anaesthesia specialty training post.

8 Tables

Table 1: Sociodemographic and educational background descriptive statistics of the UKMED sample of doctors who accepted core medical training posts during the years 2012 to 2014 (n=3720). Results of bivariate tests of association with the outcome successfully completed core medical training (Pearson's Chi squared test, logistic regression as appropriate) with associated statistics and significance. For a full list of UKMED data types, descriptions and sources please refer to the UKMED Data Dictionary available at http://www.ukmed.ac.uk/documents/UKMED_data_dictionary.pdf

Factor	Category	N	% of	%	Bivariate
		doctors	sample	Completed	Association
	Female	2136	57.42	72.05	
Gender	Male	1584	42.58	70.96	n/s
		3720	100.0		
Age on entry to	<=20 years	2846	76.51	75.72	
medical school	>20 years	579	15.56	64.08	^{x2} (2) = 131.67
	Not stated/missing	137	5.14	46.44	p<0.001
		3720	100.0		
Black and Minority	BME	1058	28.44	71.08	
Ethnic	White	2329	62.61	75.23	^{x2} (2) = 108.33
(BME) status	Not stated/missing	333	8.95	47.75	p<0.001
		3720	100.0		
SEC	Higher managerial & professional	1426	38.33	78.96	
(NS-SEC 1-7)	Lower managerial & professional	710	19.09	70.85	
Socioeconomic class of	Intermediate occupations	283	7.61	71.02	
the parent if under 21	Small employer own account	116	3.12	75.00	^{x2} (7) = 83.94
years of age.	Lower supervisory & technical	63	1.69	66.67	p<0.001
	Semi-routine occupations	161	4.33	64.60	p<0.001
	Routine occupations	41	1.10	68.29	
	Not stated/missing	920	24.73	62.17	
		3720	100.0		
Index of Multiple	Quintile 1	1078	28.98	76.72	
Deprivation (IMD) a	Quintile 2	729	19.60	74.76	
quintile ranking of	Quintile 3	523	14.06	74.76	$x^{2}(\Gamma) = \Gamma(\Gamma) = 0$
IMD zone within	Quintile 4	309	8.31	67.96	x ² (5) = 56.29 P<0.001
country of UK	Quintile 5	1833	4.92	68.31	P<0.001
students' domicile	Not stated/missing	898	24.14	62.92	
		3720	100.0		
POLAR2 (quintile	Quintile 1	126	3.39	81.75	
classification of areas	Quintile 2	259	6.96	71.04	
for young persons'	Quintile 3	441	11.85	70.07	
participation rates in	Quintile 4	731	19.65	70.59	^{x2} (5) = 71.24
higher education	Quintile 5	1525	40.99	76.72	P<0.001
based on students' UK	Not stated/missing	638	17.15	59.72	
postcode		3720	100.0		
Disability	Disabled	24	0.65	45.83	•
	No disability	3379	90.83	74.10	^x 2 (2) = 114.97
	Not stated/missing	317	8.52	46.69	P<0.001
		3720	100.0		
UK educated	1	2683	72.12	75.51	
1= Yes: completed	2	3	0.08	33.33	^x 2 (4) = 91.42
both secondary	3	293	7.88	70.31	^2 (4) = 91.42 P<0.001
education &	4	2	0.05	100.00	1 20.001
undergraduate	Not stated/missing	739	19.87	57.92	

Factor	Category	N	% of	%	Bivariate
		doctors	sample	Completed	Association
medical degree in the					
UK					
2=No: completed					
secondary education					
in the UK and					
undergraduate					
medical degree outside UK					
3= No: completed					
secondary education					
outside the UK and					
undergraduate		3720	100.0		
medical degree in UK		5720	100.0		
4= No: completed					
both secondary					
education and					
undergraduate					
medical degree					
outside UK					
UK secondary school	Yes	2686	72.20	75.47	
education	No	295	7.93	70.51	x2 (2) 07 02
Recode of UK	Not stated/missing	739	19.87	57.92	×2 (2) = 87.93
educated (1&2=1,		3720	100.0		P<0.001
3&4=0)					
Secondary school type	Privately funded	1032	27.74	76.68	
attended	State funded	2102	56.51	72.26	^x 2 (2) = 90.25
	Not stated/missing	586	15.75	56.66	P<0.001
		3720	100.0		
Income support	Yes	300	8.06	69.00	
Whether the doctor's	No	2097	56.37	77.11	
household received	Not stated/missing	1323	35.56	63.42	×2 (2) = 75.85
Income Support at any		3720	100.0		P<0.001
point during their					
school years					
Free school meals	Yes	1182	4.89	70.33	
Whether doctor had	No	2326	62.53	76.10	×2 (2) = 66.12
free school meals	Not stated/missing	1212	32.58	63.12	P<0.001
		3720	100.0		
Parent Degree	Yes	1825	49.06	78.14	
Whether the doctor's	No	763	20.51	70.38	X2 (2) 01 04
parent(s) or guardian	Not stated/missing	1132	30.43	61.84	×2 (2) = 91.94
(s) completed a university degree		3720	100.0		P<0.001
course or equivalent.					
· · · · · · · · · · · · · · · · · · ·	Graduate	438	11.37	65.98	
Graduate On Entry	Non-graduate	438 3282	88.23	72.33	^x 2 (1) = 7.67
	Not stated/missing	5202	00.23	12.33	*2 (1) = 7.67 P<0.001
		3720	- 100.0		1 20.001
Programme	Standard Entry Programme	3051	82.02	74.21	
Derived from	Graduate Entry Programme	261	7.02	72.80	
COURSE_TYPE	Foundation Course	8	0.02	50.00	^x 2 (5) = 98.50 p<0.001
1= Standard Entry	Medicine With a Gateway (Preliminary) Year	28	0.02	67.86	
Programme	Science Top-up Programme	11	0.73	0.00	h~0.001
	Not stated/missing	371	9.97	50.13	
		5/1	3.37	30.13	

Factor	Category	Ν	% of	%	Bivariate
		doctors	sample	Completed	Association
2=Graduate Entry		3720	100.0		
Programme					
3= Medicine With					
Gateway/Preliminary					
Year Programme					
Medical school Entry	Non-graduate entrant to Standard Entry	2868	77.10	75.24	
Status	Programme				-
	Graduate entrant to Standard Entry	183	4.92	57.92	^x 2 (3) = 110.85
-	Programme	0.45	6 50	74.04	p<0.001
-	Entrant to Graduate Entry Programme	245	6.59	71.84	
-	Not stated/missing	424	11.40	52.59	-
		3720	100.0		
Age at entry to	Age<21 years	2846	76.51	75.72	· · ·
medical	Age>=21 years	579	15.56	64.08	×2 (2) = 131.67
-	Not stated/missing	295	7.93	46.44	p<0.001
		3720	100.0		
Parent(s) had higher	Yes	257	6.91		-
education	No	95	2.55		- <u>,</u>
qualifications	Not stated/missing	3368	90.54		n/s
		3720	100.0		
IDACI quintile	1	480	12.90	69.17	-
-	2	501	13.47	76.05	-
-	3	492	13.23	75.61	-
-	4	483	12.98	75.98	×2 (5) = 59.00
_	5	500	13.44	79.00	P<0.001
_	Not stated/missing	1264	33.98	64.56	
		3720	100.00		
First medical school	See Table 2 for details				×2 (33) = 213.07
_	Not stated/missing				P<0.001
		3720	100.0		1 (0.001
Foundation School	See Table 2 for details				×2 (29) = 148.65
Deanery	Not stated/missing				P<0.001
		3720	100.0		1 <0.001
Health Education	See Table 3 for details				×2 (16) = 642.29
Training Deanery	Not stated/missing				P<0.001
		3720	100.0		1 <0.001
Intercalated	Yes	635	17.077	75.91	
	No	3085	82.93	70.70	^x 2 (1) = 7.02
	Not stated/missing	-			P<0.001
		3720	100.0		
Educational	1	131	3.52	61.83	
Performance Measure	2	147	3.95	71.43	
quartile band	3	201	5.40	80.60	^x 2 (4) = 26.83
	4	212	5.70	82.08	P<0.001
	Not stated/missing	3029	81.42	70.68	
		3720	100.0		
UK Primary Medical	Yes	3429	92.18	73.78	
Qualification	No	291	7.82	45.70	×2 (1) = 103.97
ļ	Not stated/missing	-	-		P<0.001
-	. 5	3720	100.0		
Part-time core medical	Yes	110	2.96	44.55	×2 (2) = 783.96
training	No	3343	89.87	78.19	P<0.001
0	Not stated/missing	267	7.18	0	1

Factor	Category	N	% of	%	Bivariate
		doctors	sample	Completed	Association
		3720	100.0		
Continuous variables			Mean (SD)	Min - Max	Regression
Total UCAS tariff	Total UCAS tariff for all HESA Tariff included qualifications			20 to 900	B = .002
			(95.39)		P<0.001
	UKCAT Total score	n=372	2512.17 (232.86)	1760 - 3130	B = .002 P<0.01
Age on entry to medical school		n= 3425	19.21 (2.5)	17 to 40	B =10 P<0.001
	CMT Shortlisting score	n=3698	25.09	2 to 92	B = .04
			(11.09)		P<0.001
	CMT Interview score	n=3707	49.31	16 to 147	B = .07
			(6.57)		P<0.001

1

Table 2: Sociodemographic and educational background descriptive statistics of the UKMED sample of doctors who accepted core anaesthesia training posts during the years 2012 to 2014 (n=1577). Results of bivariate tests of association with the outcome successfully completed core anaesthesia training (Pearson's Chi squared test, logistic regression as appropriate) with associated statistics and significance. For a full list of UKMED data types, descriptions and sources please refer to the UKMED Data Dictionary available at http://www.ukmed.ac.uk/documents/UKMED_data_dictionary.pdf

			% of	%	Bivariate			
Factor	Category	N doctors	sample	Completed	Association			
	Female	767	48.64	76.01				
Gender	Male	810	51.36	79.38	n/s			
		1577	100.00					
Age on entry to	<=20 years	1153	73.11	80.14				
medical school	>20 years	385	24.41	73.73	^{x2} (2) = 19.68			
	Not stated/missing	39	2.47	56.41	p<0.001			
		1577	100.00					
Black and Minority	BME	331	20.99	74.92				
Ethnic	White	1203	76.28	79.22	^{x2} (2) = 12.58			
(BME) status	Not stated/missing	43	2.73	58.13	p<0.002			
		1577	100.00		-			
SEC	Higher managerial & professional	602	38.17	79.57				
(NS-SEC 1-7)	Lower managerial & professional	350	22.19	79.14				
Socioeconomic class of	Intermediate occupations	140	8.88	78.57				
the parent if under 21	Small employer own account	41	2.60	82.93				
years of age.	Lower supervisory & technical	30	1.90	83.33	n/s			
	Semi-routine occupations	78	4.95	79.49	.,.			
	Routine occupations	22	1.40	68.18				
	Not stated/missing	314	19.91	71.34				
		1577	100.00					
Index of Multiple	Quintile 1	516	32.72	81.01				
Deprivation (IMD) a	Quintile 2	359	22.76	77.72				
quintile ranking of	Quintile 3	238	15.09	77.31	^{x2} (5) = 14.26			
IMD zone within	Quintile 4	143	9.07	82.52				
country of UK	Quintile 5	67	4.25	70.15	P<0.01			
students' domicile	Not stated/missing	254	16.11	70.87				
	Not stated/missing	1577	100.00	70.07				
POLAR2 (quintile	Quintile 1	56	3.55	80.36				
classification of areas	Quintile 2	121	7.67	79.34				
for young persons'	Quintile 3	220	13.95	81.36				
participation rates in	Quintile 4	330	20.93	73.94	^{x2} (5) = 15.82			
higher education	Quintile 5	732	46.42	79.78	P<0.01			
based on students' UK	Not stated/missing	118	7.48	66.10				
postcode	Not stated/missing	1577	100.00	00.10				
		1377	100.00					
Disability	Disabled	15	0.95	73.33				
	No disability	1513	95.94	78.59	^x 2 (3) = 13.04			
	Not stated/missing	49	3.11	53.06	P<0.001			
		1577	100.00					
UK educated	1	1223	77.55	79.72				
= Yes: completed	2	66	4.19	69.70				
ooth secondary	3	22	0.13	100.00				
ducation &	Not stated/missing	286	18.14	70.98	^x 2 (3) = 13.37			
indergraduate		1577	100.00	, 0.50	P<0.004			
medical degree <u>in</u> the		10,7	100.00					
JK								

			% of	%	Bivariate
Factor	Category	N doctors	sample	Completed	Association
2=No: completed					
secondary education					
outside the UK and					
undergraduate					
medical degree <u>in</u> UK					
3= No: completed					
both secondary					
education and					
undergraduate					
medical degree					
<u>outside</u> UK					
UK secondary school	Yes	1223	77.55	79.72	
education	No	68	4.31	70.59	X2 (2) - 12 24
Recode of UK	Not stated/missing	286	18.14	70.98	x2 (2) = 12.34
educated (1=1Yes 2&3					P<0.002
=No)					
Secondary school type	Privately funded	1012	64.17	77.87	
attended	State funded	437	27.71	79.63	/-
	Not stated/missing	128	8.12	70.31	n/s
		1577	100.00		
Income support	Yes	140	8.88	70.00	
Whether the doctor's	No	954	60.49	81.45	
household received	Not stated/missing	483	30.63	72.67	^x 2 (2) = 19.59
Income Support at any		1577	100.00		P<0.001
point during their					
school years					
Free school meals	Yes	96	6.09	67.71	
Whether doctor had	No	1045	66.27	81.05	^x 2 (2) = 20.46
free school meals	Not stated/missing	434	27.65	72.02	P<0.001
		1577	100.00		
Parent Degree	Yes	798	50.60	81.45	
Whether the doctor's	No	391	24.79	76.47	
parent(s) or guardian	Not stated/missing	388	24.60	71.39	^x 2 (2) = 15.76
(s) completed a	inderstated, missing	1577	100.00	, 1.00	P<0.001
university degree		1577	100.00		
course or equivalent.					
Graduate On Entry	Graduate	295	18.71	73.56	
	Non-graduate	1282	881.29	78.71	,
	Not stated/missing	1577	100.00		n/s
Programme	Standard Entry Programme	1278	81.04	79.26	
Derived from	Graduate Entry Programme	185	11.73	74.59	
COURSE_TYPE	Foundation Course	7	0.44	71.43	
1= Standard Entry	Medicine With a Gateway (Preliminary) Year	22	1.40	86.36	
, Programme	Not stated/missing	85	5.39	60.00	x2 / 4) 40 24
2=Graduate Entry		1577	100.00		^x 2 (4) = 19.34
Programme					p<0.001
3= Foundation Course					
4= Medicine With					
Gateway/Preliminary					
Year Programme					
Medical school Entry	Non-graduate entrant to Standard Entry	1164	73.81	79.81	^x 2 (3) = 13.75
Nicular School Entry					

			% of	%	Bivariate	
Factor	Category	N doctors	sample	Completed	Association	
	Graduate entrant to Standard Entry	114	7.23	73.68		
_	Programme					
_	Entrant to Graduate Entry Programme	169	10.72	74.56		
_	Not stated/missing	130	8.24	66.92		
		1577	100.00			
Parent(s) had higher	Yes	128	8.12	83.59		
education	No	38	2.41	78.95		
qualifications	Not stated/missing	1411	89.47	77.18	n/s	
		1577	100.00			
IDACI quintile	1	229	14.52	77.73		
	2	241	15.28	80.91		
_	3	225	14.27	77.78		
_	4	247	15.56	79.35		
_	5	236	14.97	81.78	n/s	
_	Not stated/missing	399	25.30	72.43		
		1577	100.00			
First medical school	See Table 2 for details				×2 (33) = 68.22	
	Not stated/missing				P<0.001	
					1 30.001	
Foundation School	See Table 2 for details				×2 (26) = 37.96	
Deanery	Not stated/missing				^2 (26) = 37.90 p= 0.061	
					p= 0.001	
Health Education	cation See Table 3 for details				×2 (16) = 56.41	
Training Deanery	Not stated/missing				p<0.001	
					p<0.001	
Intercalated	Yes	293	18.58	78.50		
	No	1284	81.42	77.57	n/s	
	Not stated/missing	-	-	-	11/5	
		1577	100.00			
Educational	1	44	2.79	54.55		
Performance Measure	2	54	3.42	81.48		
quartile band	3	79	5.01	86.08	^x 2 (4) = 25.43	
	4	92	5.83	89.13	p<0.001	
	Not stated/missing	1308	82.94			
		1577	100.00			
UK Primary Medical	Yes	1542	97.78	78.27		
Qualification	No	35	2.22	54.29	^x 2 (1) = 11.38	
	Not stated/missing				p<0.001	
		1577	100.00			
Part-time anaesthesia	Yes	54	3.42	66.67		
training	No	1505	95.05	78.88	^x 2 (2) = 47.73	
	Not stated/missing	17	1.08	11.76	p<0.001	
		1577	100.00			
Continuous variables			Mean (SD)	Min - Max	Regression	
Total UCAS tariff fo	or all HESA Tariff included qualifications	n=1161	470.4	60-890	B = 0.0028	
			(104.2)		P<0.001	
	UKCAT Total score	n=190, 88% r		<u>ا</u>		
Δσο σ	on entry to medical school	n=150, 88761	19.8yrs	17 to 43yrs	B = -0.0521	
ABC (an entry to medical school	1-1330	(3.27)	1, 10 - 5 13	P<0.001	
Δnaesthe	sia Training Shortlisting score	n=12, 99.3%		es	0.001	
					B = .0105	
Ansorth	Anaesthesia Training Interview scoren=1575150.38223 to 267(22.60)					

Table 3: Percentage of doctors with successful completion of core medical training by medical school and foundation school attended.

	N	% Successfully Completed	Foundation School	N	% Successfully Completed
Medical School	doctors	CMT	Deanery	doctors	CMT
Aberdeen	65	72.31	Black Country/Shropshire	44	72.73
Barts	110	60.91	Coventry and Warwickshire	53	71.70
Birmingham	161	79.50	East Anglian	119	73.95
Brighton	50	72.00	Leicestershire, North	66	63.64
Bristol	114	71.05	Mersey	162	69.14
Cambridge	198	86.36	North Central Thames	211	86.26
Cardiff	144	81.94	North East Thames	151	75.50
Dundee	42	61.90	North West Thames	163	85.28
Durham	42	64.29	North Western	227	67.84
Edinburgh	113	78.76	North Yorkshire East	72	61.11
Glasgow	101	74.26	Northern	193	63.21
Hull York	48	62.50	Northern Ireland	149	61.07
Imperial	201	86.07	Oxford	101	80.20
Keele	31	67.74	Peninsula	69	56.52
King's	150	66.00	Scotland	245	72.24
Lancaster	7	71.43	Severn	112	70.54
Leeds	89	69.66	South Thames	368	74.73
Leicester	98	60.20	South Yorkshire	95	73.68
Liverpool	173	72.25	Trent	121	80.99
Manchester	177	68.93	Wales	139	76.98
Newcastle	135	73.33	Wessex	134	76.12
Norwich	55	67.27	West Midlands Central	84	83.33
Nottingham	139	76.98	West Midlands North	49	59.18
Oxford	126	85.71	West Midlands South	25	68.00
Peninsula	63	68.25	West Yorkshire	93	63.44
Queen's	142	61.27	UK PMQ/ no UK FS	367	70.30
Sheffield	115	72.17	Non-UK PMQ / no UK FS	108	40.74
Southampton	104	68.27			
St Andrews	49	57.14			
St George's	84	71.43			
Swansea	17	70.59			
UCL	204	82.84			
Warwick	78	78.21			
*Non-UK medical school	295	46.44			
All	3720	71.59	All	3720	71.59

Table 4: Percentage of doctors with successful completion of core medical training by HE Deanery where training took place.

	Ν	% Successfully	
CMT Deanery	trainees	Completed CMT	
HE East Midlands	174	77.59	
HE East England	236	74.58	
HE Kent, Surrey & Sussex	214	64.95	
HE London NC & E	260	90.00	
HE London NW	208	93.75	
HE London S	249	89.16	
HE North East	138	73.19	
HE North West	431	70.30	
HE South West	229	78.17	
HE Thames Valley	99	96.97	
HE Wessex	144	77.78	
HE West Midlands	225	78.22	
HE York & Humber	293	59.39	
NHSE Scotland	194	81.96	
Northern Ireland MTDA	153	62.75	
Multiple (+ London n=9)	75	85.33	
Missing	398	25.63	
All	3720	71.59	

Table 5: Binary logistic regression Model 1a and Model 1b of the outcome successfully completed core medical training, significance of predictors (chi-squared statistic and p-value from likelihood ratio test, and model statistics. Blank cells denote variable not included in a model, n/s denotes non-significance.

		М	odel 1a	Mod	lel 1b	
Predictor	df	X ²	P-value	X ²	P-value	
POLAR	4			15.96	0.001	
Disability	1			n/s	n/s	
BME	1			7.33	0.007	
UCAS Tariff score	1					
Graduate Entry	1	19.24	0.0000	16.61	0.000	
First Medical School	33	53.06	0.0149	45.41	0.0441	
Foundation School	29	n/s	n/s	n/s	n/s	
CMT_Deanery	21	59.82	0.0000	50.95	0.0000	
CMT Short Listing Score	1	13.72	0.0000	11.80	0.001	
CMT Interview Score	1	46.91	0.0000	33.36	0.0000	
Part-time core medical training	1	45.22	0.0000	38.45	0.0000	
		Model s	tatistics			
Minimum required sample size		445		502		
Actual sample size		3296	5	27	09	
Mean probability		0.775	52	0.80	007	
Standard Deviation		0.16	5	0.2	16	
95% CI	0.76 – 0.79		0.79 to	0.81		
Hosmer-Lemeshow test		$X^{2}(10) = 7.22$	1 <i>,</i> p>0.05	X2 (10) = 9.	47, p>0.05	
Area under ROC curve		0.76	5	0.7	77	

Table 6: Odds ratios (OR) and associated statistics for binary logistic regression of the outcome successful completion of core medical training' (Model 1a, n = 3296).

					0.50	
Predictor	OR	S.E.	Z	P-value		6 CI
Part-time training	0.2060	0.0484	-6.72	0.0000	0.1300	0.3265
Graduate on entry	0.5460	0.0859	-3.85	0.0000	0.4011	0.7432
First Medical school (Refer		1			0.0750	4 6 4 7 4
Aberdeen	2.0099	0.8529	1.65	0.1000	0.8750	4.6171
Barts	0.8765	0.3020	-0.38	0.7020	0.4461	1.7221
Birmingham	2.6794	0.9188	2.87	0.0040	1.3682	5.2471
Brighton and Sussex	1.8299	0.8056	1.37	0.1700	0.7721	4.3369
Bristol	1.2948	0.4193	0.8	0.4250	0.6863	2.4427
Cambridge	2.8685	0.9898	3.05	0.0020	1.4586	5.6413
Cardiff	3.4042	1.5412	2.71	0.0070	1.4016	8.2677
Dundee	1.0627	0.4720	0.14	0.8910	0.4450	2.5381
Durham	1.4061	0.5900	0.81	0.4170	0.6178	3.2001
Edinburgh	2.4356	0.9122	2.38	0.0170	1.1690	5.0746
Glasgow	1.8565	0.7137	1.61	0.1080	0.8739	3.9437
Hull York	1.2525	0.4934	0.57	0.5680	0.5788	2.7106
Imperial	2.3357	0.7836	2.53	0.0110	1.2102	4.5078
Keele	2.7524	1.5163	1.84	0.0660	0.9349	8.1029
King's	1.2621	0.3734	0.79	0.4310	0.7067	2.2539
Lancaster	2.1188	1.8812	0.85	0.3980	0.3718	12.0738
Leeds	1.6495	0.5829	1.42	0.1570	0.8252	3.2972
Leicester	1.2185	0.4163	0.58	0.5630	0.6238	2.3804
Liverpool	1.6032	0.4583	1.65	0.0990	0.9155	2.8075
Manchester	1.6420	0.4790	1.7	0.0890	0.9269	2.9087
Newcastle	2.9652	1.0607	3.04	0.0020	1.4709	5.9777
Norwich	1.6378	0.6728	1.2	0.2300	0.7321	3.6639
Nottingham	1.7365	0.5946	1.61	0.1070	0.8876	3.3975
Oxford	3.2186	1.4024	2.68	0.0070	1.3702	7.5607
Peninsula	1.7071	0.7157	1.28	0.2020	0.7506	3.8824
Queen's	1.1809	0.4775	0.41	0.6810	0.5346	2.6086
Sheffield	1.8939	0.6606	1.83	0.0670	0.9559	3.7521
Southampton	1.3789	0.4733	0.94	0.3490	0.7036	2.7022
St Andrews	1.4978	0.6692	0.9	0.3660	0.6240	3.5955
St George's	1.6994	0.6086	1.48	0.1390	0.8423	3.4287
Swansea	4.6281	5.1465	1.38	0.1680	0.5234	40.9208
UCL	1.8677	0.5953	1.96	0.0500	1.0000	3.4882
Warwick	6.7423	3.6435	3.53	0.0000	2.3379	19.4445
CMT Deanery (Reference g	- T			Г		r
HE East Midlands	0.1933	0.1308	-2.43	0.0150	0.0513	0.7283
HE East England	0.1248	0.0810	-3.21	0.0010	0.0350	0.4452
HE Kent, Surrey, Sussex	0.0647	0.0420	-4.22	0.0000	0.0182	0.2306
HE London NC&E	0.2104	0.1396	-2.35	0.0190	0.0573	0.7725
HE London NW	0.2494	0.1719	-2.01	0.0440	0.0646	0.9630
HE London S	0.1962	0.1292	-2.47	0.0130	0.0540	0.7134
HE North East	0.1194	0.0825	-3.08	0.0020	0.0308	0.4622
HE North West	0.1212	0.0789	-3.24	0.0010	0.0338	0.4344
HE South West	0.1634	0.1073	-2.76	0.0060	0.0451	0.5916
HE Wessex	0.1406	0.0972	-2.84	0.0050	0.0363	0.5448
HE West Midland	0.2103	0.1404	-2.34	0.0200	0.0568	0.7781
HE York Humber	0.0804	0.0525	-3.86	0.0000	0.0224	0.2892

NHSE Scotland	0.1841	0.1280	-2.43	0.0150	0.0471	0.7193
Northern Ireland MTDA	0.1399	0.1132	-2.43	0.0150	0.0286	0.6830
Multiple	0.1727	0.1228	-2.47	0.0130	0.0429	0.6957
CMT Short Listing Score	1.0231	0.0055	4.24	0.0000	1.0124	1.0340
CMT Interview Score	1.0703	0.0104	7.02	0.0000	1.0502	1.0907

Table 7:Typologies, derived from logistic regression Model 1a, of predicted probability of the outcome 'successfully completed core medical training' computed for combinations of values on the predictors graduate on entry and UK medical school, holding all other predictors in the model at their means (n= 3305, mean predicted probability = 0.7730).

	UK medical	Predicted		
Entry status	school	probability	95%	6 CI
Non- graduate entrant	Yes	0.84	0.83	0.86
	No	0.53	0.47	0.60
Graduate	Yes	0.73	0.68	0.79
entrant	No	0.37	0.28	0.46

Table 8: Odds ratios (OR) and associated statistics for binary logistic regression of the outcome successful completion of core medical training' (Model 1b, n = 2709).

Predictor	OR	S.E.	Z	P-value	95%	6 CI
Part-time training	0.1810	0.0497	-6.20	0.0000	0.1048	0.3097
POLAR (Reference group q1))					
q2	0.5160	0.1767	-1.93	0.0430	0.2637	1.0096
q3	0.4658	0.1514	-2.35	0.0190	0.2463	0.8809
q4	0.4032	0.1267	-2.89	0.0040	0.2178	0.7463
q5	0.6163	0.1898	-2.57	0.0160	0.3370	0.8670
Disability	0.4756	0.2555	-1.38	0.1670	0.1659	1.3632
BME	0.7140	0.0946	-2.54	0.0110	0.5508	0.9257
Graduate on entry	0.4868	0.0860	-4.08	0.0000	0.3444	0.6882
Intercalated	1.1004	0.1897	0.56	0.5790	0.7848	1.5428
First Medical school (Referen	nce group: V	Varwick me	edical school))		
Aberdeen	0.1866	0.1368	-2.29	0.0220	0.0444	0.7850
Barts	0.0982	0.0637	-3.58	0.0000	0.0275	0.3500
Birmingham	0.2506	0.1584	-2.19	0.0290	0.0726	0.8647
Brighton and Sussex	0.2130	0.1489	-2.21	0.0270	0.0541	0.8386
Bristol	0.1529	0.0961	-2.99	0.0030	0.0446	0.5238
Cambridge	0.3092	0.1992	-1.82	0.0680	0.0875	1.0929
Cardiff	0.4558	0.3249	-1.10	0.2700	0.1127	1.8429
Dundee	0.0910	0.0676	-3.23	0.0010	0.0212	0.3901
Durham	0.1432	0.1027	-2.71	0.0070	0.0352	0.5837
Edinburgh	0.2010	0.1369	-2.36	0.0180	0.0529	0.7635
Glasgow	0.1852	0.1277	-2.44	0.0140	0.0479	0.7157
Hull York	0.1627	0.1126	-2.62	0.0090	0.0419	0.6320
Imperial	0.3002	0.1908	-1.89	0.0580	0.0864	1.0431
Keele	0.3698	0.3141	-1.17	0.2410	0.0700	1.9538
King's	0.1117	0.0687	-3.56	0.0000	0.0335	0.3728
Lancaster	0.1653	0.1713	-1.74	0.0820	0.0217	1.2606
Leeds	0.1346	0.0895	-3.01	0.0030	0.0366	0.4957
Leicester	0.1206	0.0773	-3.30	0.0010	0.0343	0.4238
Liverpool	0.2019	0.1252	-2.58	0.0100	0.0599	0.6807
Manchester	0.1816	0.1127	-2.75	0.0060	0.0539	0.6126
Newcastle	0.4560	0.3106	-1.15	0.2490	0.1200	1.7329
Norwich	0.2340	0.1622	-2.10	0.0360	0.0602	0.9102
Nottingham	0.1966	0.1253	-2.55	0.0110	0.0564	0.6856
Oxford	0.4689	0.3359	-1.06	0.2900	0.1152	1.9088
Peninsula	0.1740	0.1197	-2.54	0.0110	0.0452	0.6699
Queen's	0.1191	0.0852	-2.97	0.0030	0.0293	0.4839
Sheffield	0.1938	0.1279	-2.49	0.0130	0.0532	0.7061
Southampton	0.1501	0.0952	-2.99	0.0030	0.0433	0.5206
St Andrews	0.1866	0.1387	-2.26	0.0240	0.0435	0.8011
St George's	0.1766	0.1127	-2.72	0.0070	0.0506	0.6167
Swansea	0.4334	0.5256	-0.69	0.4910	0.0402	4.6681
UCL	0.1765	0.1106	-2.77	0.0060	0.0517	0.6030
CMT Deanery (Reference gro	oup: HE Tha	mes Valley	()			
HE East Midlands	0.3424	0.2517	-1.46	0.1500	0.0810	1.4464
HE East England	0.1355	0.0909	-2.98	0.0030	0.0364	0.5043
HE Kent, Surrey, Sussex	0.0877	0.0581	-3.67	0.0000	0.0239	0.3214
HE London NC&E	0.2555	0.1737	-2.01	0.0450	0.0674	0.9682
HE London NW	0.2750	0.1937	-1.83	0.0670	0.0691	1.0934

HE London S	0.2638	0.1779	-1.98	0.0480	0.0704	0.9891
HE North East	0.1663	0.1207	-2.47	0.0130	0.0401	0.6899
HE North West	0.1265	0.0851	-3.07	0.0020	0.0339	0.4728
HE South West	0.2308	0.1555	-2.18	0.0300	0.0616	0.8643
HE Wessex	0.1974	0.1422	-2.25	0.0240	0.0481	0.8102
HE West Midland	0.3496	0.2473	-1.49	0.1370	0.0874	1.3986
HE York Humber	0.1002	0.0682	-3.38	0.0010	0.0264	0.3803
NHSE Scotland	0.3541	0.2675	-1.37	0.1690	0.0806	1.5564
Northern Ireland MTDA	0.2124	0.1811	-1.82	0.0690	0.0399	1.1297
Multiple	0.2632	0.1988	-1.77	0.0770	0.0599	1.1564
CMT Short Listing Score	1.0227	0.0067	3.44	0.0010	1.0097	1.0358
CMT Interview Score	1.0670	0.0120	5.78	0.0000	1.0438	1.0908

Table 9: Typologies, derived from logistic regression Model 1b, of predicted probability of the outcome 'successfully completed core medical training' computed for combinations of values on the predictors graduate on entry, BME and POLAR quintile 1 versus POLAR quintile 5 holding all other predictors in the model at their means (n= 2718, mean predicted probability = 0.79).

POLAR	Ethnicity	Entry level	vel Probability 95% Confidence Ir		ence Interval
	BME	Graduate	0.79	069	0.90
Ouintile 1	DIVIL	Non-graduate	0.89	0.84	0.95
Quintile 1	White	Graduate	0.85	0.76	0.93
		Non-graduate	0.92	0.88	0.96
	DIAL	Graduate	0.71	0.63	0.79
Quintile 5	BME	Non-graduate	0.84	0.81	0.87
		Graduate	0.78	0.72	0.83
	White	Non-graduate	0.88	0.86	0.90

Table 10: Sociodemographic and educational background descriptive statistics of the UKMED sample of doctors who accepted core medical training during the years 2012 to 2014, and subsequently successfully completed their core medical training. Results of bivariate tests of association with the outcome 'applied for higher-level medical specialty training' (Pearson's Chi squared test, logistic regression as appropriate) with associated statistics and significance. For a full list of UKMED data types, descriptions and sources please refer to the UKMED Data Dictionary available at <u>http://www.ukmed.ac.uk/documents/UKMED data dictionary.pdf</u>

				% Applied higher-	
		N	% of	level medical	Bivariate
Factor	Category	doctors	sample	specialty training	Association
	Female	1539	57.79	57.63	
Gender	Male	1124	42.24	42.37	n/s
		2663	100.00		
Age on entry to	<=20 years	2155	80.92	8098	
medical school	>20 years	371	13.93	13.26	
	Not stated/missing	137	5.14	5.77	n/s
		2663	100.00		
Black and Minority	BME	752	28.24	28.90	
Ethnic	White	1752	65.79	64.73	nla
(BME) status	Not stated/missing	159	5.97	6.38	n/s
		2663	100.0		
SEC	Higher managerial & professional	1126	42.28	41.65	
(NS-SEC 1-7)	Lower managerial & professional	503	18.89	19.36	
Socioeconomic class of	Intermediate occupations	201	7.55	6.49	
the parent if under 21	Small employer own account	87	3.27	3.27	
years of age.	Lower supervisory & technical	42	1.58	1.50	n/s
	Semi-routine occupations	104	3.91	3.94	
	Routine occupations	28	1.05	1.16	
	Not stated/missing	572	21.48	22.63	
		2663	100.00		
Index of Multiple	Quintile 1	827	31.06	30.56	
Deprivation (IMD) a	Quintile 2	545	20.47	20.30	
quintile ranking of IMD	Quintile 3	391	14.68	13.70	
zone within country of	Quintile 4	210	989	7.99	n/s
UK students' domicile	Quintile 5	125	4.69	4.88	·
	Not stated/missing	565	21.22	22.57	
		2663	100.00		
POLAR2 (quintile	Quintile 1	103	3.87	3.88	
classification of areas	Quintile 2	184	6.91	6.27	
for young persons'	Quintile 3	309	11.60	11.48	
participation rates in	Quintile 4	516	19.38	19.30	nla
higher education based	Quintile 5	1170	43.94	44.15	n/s
on students' UK	Not stated/missing	381	14.31	14.92	
postcode		2663	100.00		
Disability	Disabled	11	0.41	0.44	
	No disability	2504	94.03	93.57	n/s
	Not stated/missing	148	5.56	5.99	11/5
		2663	100.0		
UK educated	1	2026	76.08	73.77	
1= Yes: completed <u>both</u>	2	1	0.04	0.00	
secondary education &	3	206	7.74	7.43	^x 2 (4) =
undergraduate medical	4	2	0.08	0.06	31.82
degree in the UK	Not stated/missing	428	16.07	18.75	P<0.001
2=No: completed		2663	100.00		
secondary education in					

				% Applied higher-	
Factor	Catagony	N	% of	level medical	Bivariate
Factor the UK and	Category	doctors	sample	specialty training	Association
undergraduate medical degree outside UK					
3= No: completed					
secondary education					
outside the UK and					
undergraduate medical					
degree in UK					
4= No: completed both					
secondary education					
and undergraduate					
medical degree outside					
UK					
UK secondary school	Yes	2027	76.12	73.77	x2 (2)
education	No	208	7.81	7.49	×2 (2) =
Recode of UK educated	Not stated/missing	428	16.07	18.75	29.65 P<0.001
(1&2=1, 3&4=0)		2663	100.00		P<0.001
Secondary school type	Privately funded	812	30.49	30.12	
attended	State funded	1519	57.04	56.91	10 / D
	Not stated/missing	332	12.47	12.98	n/s
		2663	100.0	-	
Income support	Yes	207	7.77	8.26	
Whether the doctor's	No	1617	60.72	58.40	x2 (2) -
household received	Not stated/missing	839	331.51	33.33	^x 2 (2) = 12.59
Income Support at any		2663	100.00		P<0.001
point during their					F<0.001
school years					
Free school meals	Yes	128	4.81	5.16	^x 2 (2) =
Whether doctor had	No	1770	66.47	63.84	17.31
free school meals	Not stated/missing	768	28.73	31.00	P<0.001
		2663	100.0		1 <0.001
Parent Degree	Yes	1426	53.55	52.08	
Whether the doctor's	No	537	20.17	19.36	×2 (2) =
parent(s) or guardian	Not stated/missing	7000	26.29	28.56	15.08
(s) completed a		2663	100.00		P<0.001
university degree					1 101001
course or equivalent.					
Graduate On Entry	Graduate	289	10.85	100.04	
	Non-graduate	2374	89.15	89.96	n/s
	Not stated/missing				.,
		2663	100.00		
Programme	Standard Entry Programme	2264	85.02	84.91	
Derived from	Graduate Entry Programme	190	7.13	6.82	
COURSE_TYPE	Foundation Course	4	0.15	0.22	
1= Standard Entry	Medicine With a Gateway (Preliminary) Year	19	0.71	0.50	
Programme	Science Top-up Programme	-	-	-	n/s
2=Graduate Entry	Not stated/missing	186	6.89	7.54	
Programme		2663	100.00		
3= Medicine With					
Gateway/Preliminary					
Year Programme	Non graduate entrant to Standard Entry	2150	01 044	01 5 2	
Medical school Entry Status	Non-graduate entrant to Standard Entry Programme	2158	81.044	81.53	n/s
Status	FIUgrannie	I			

				% Applied higher-		
		N	% of	level medical	Bivariate	
Factor	Category	doctors	sample	specialty training	Association	
	Graduate entrant to Standard Entry	106	3.98	3.38		
	Programme					
	Entrant to Graduate Entry Programme	176	6.61	6.43		
	Not stated/missing	223	8.37	8.65		
		2663	100.00			
Age at entry to medical	Age<21 years	2155	80.92	80.98		
_	Age>=21 years	371	13.93	13.26	^x 2 (2) = 6.05	
_	Not stated/missing	137	5.14	5.77	p<0.05	
		2663	100.00			
Parent(s) had higher	Yes	191	7.17	8.49		
education	No	70	2.63	2.83	×2 (2) =	
qualifications	Not stated/missing	2402	90.20	86.69	15.70	
		2663	100.00		P<0.001	
IDACI quintile	1	332	12.47	112.81		
	2	381	14.31	13.03		
	3	372	13.97	13.59		
	4	367	13.78	14.09	×2 (5) =	
	5	395	14.83	14.36	12.58	
	Not stated/missing	816	30.64	32.11	P<0.05	
		2663	100.00			
First medical school	See Table 2 for details					
	Not stated/missing				n/s	
		2663	100.00			
Foundation School	See Table 2 for details				^x 2 (26) =	
Deanery	Not stated/missing				64.30	
		2663	100.00		P<0.001	
Health Education	See Table 3 for details				^x 2 (16) =	
Training Deanery	Not stated/missing				64.30	
		2663	100.00		P<0.01	
Intercalated	Yes	482	18.10	19.52		
	No	2181	81.90	80.48	×2 (1) = 7.63	
	Not stated/missing	-			P<0.01	
		2663	100.00			
Educational	34	81	3.04	3.88		
Performance Measure	36	105	3.94	4.71	×2 (4)	
Quartile	38	162	6.08	6.77	×2 (4) =	
	40	174	6.53	7.38	38.58	
	Not stated/missing	2141	80.40	77.26	P<0.001	
UK Primary Medical	Yes	2530	95.01	94.45		
Qualification	No	133	4.99	5.55	,	
	Not stated/missing				n/s	
		2663	100.00			
Continuous variables			Mean	Min - Max		
			(SD)	-	Regression	
Total UCAS tariff fo	or all HESA Tariff included qualifications	n=2102	481	20 to 900	,	
			(90.48)		n/s	
	UKCAT Total score	n=275	2534.17	1760 - 3130	,	
	-		(227.26)		n/s	
Age o	on entry to medical school	n=2526	19.04	17 to 40		
-0			(2.3)		n/s	
(CMT Shortlisting score	n= 2653	26.45	4 to 64	n/s	

				% Applied higher-	
		Ν	% of	level medical	Bivariate
Factor	Category	doctors	sample	specialty training	Association
			(10.86)		
CMT Interview score		n=2662	49.99	16 to 147	n /c
			(6.26)		n/s

 Table 11: Percentage of doctors who applied for higher-level medical specialty training by medical school and foundation school attended.

			Foundation		
	N		School		
Medical School	Doctors	% Applied	Deanery	N doctors	% Applied
Aberdeen	47	78.72	Black Country/Shropshire	32	78.13
Barts	67	76.12	Coventry and Warwickshire	38	52.63
Birmingham	128	61.72	East Anglian	88	68.18
Brighton	36	69.44	Leicestershire, North	42	69.05
Bristol	81	64.20	Mersey	112	72.32
Cambridge	171	64.33	North Central Thames	182	67.03
Cardiff	118	72.03	North East Thames	114	71.05
Dundee	26	61.54	North West Thames	139	67.63
Durham	27	66.67	North Western	154	68.83
Edinburgh	89	68.54	North Yorkshire East	44	63.64
Glasgow	75	72.00	Northern	122	68.85
Hull York	30	70.00	Northern Ireland	91	62.64
Imperial	173	71.68	Oxford	81	64.20
Keele	21	47.62	Peninsula	39	58.97
King's	99	65.66	Scotland	177	80.79
Lancaster	5	100.00	Severn	79	72.15
Leeds	62	70.97	South Thames	275	68.73
Leicester	59	61.02	South Yorkshire	70	77.14
Liverpool	125	66.40	Trent	98	72.45
Manchester	122	62.30	Wales	107	72.90
Newcastle	99	69.70	Wessex	102	63.73
Norwich	37	72.97	West Midlands Central	70	64.29
Nottingham	107	71.03	West Midlands North	29	58.62
Oxford	108	55.56	West Midlands South	17	70.59
Peninsula	43	79.07	West Yorkshire	59	76.27
Queen's	87	66.67	UK PMQ/ no UK FS	258	51.94
Sheffield	83	75.90	Non-UK PMQ / no UK FS	44	70.45
Southampton	71	59.15			
St Andrews	28	75.00			
St George's	60	71.67			
Swansea	12	75.00			
UCL	169	63.91			
Warwick	61	60.66			
*Non-UK medical school	137	75.91			
All	2663	67.71	All	2663	67.71

Table 12: Percentage of doctors who applied for higher-level medical specialty training by HE Deanery where
core medical training took place.

	N		
CMT Deanery	students	% Applied	
HE East Midlands	135	65.93	
HE East England	176	65.34	
HE Kent, Surrey & Sussex	139	62.59	
HE London NC & E	234	66.24	
HE London NW	195	65.13	
HE London S	222	72.52	
HE North East	101	62.38	
HE North West	303	67.66	
HE South West	179	65.92	
HE Thames Valley	96	64.58	
HE Wessex	112	62.50	
HE West Midlands	176	62.50	
HE York & Humber	174	75.29	
NHSE Scotland	159	83.02	
Northern Ireland MTDA	96	64.58	
Multiple (+ London n=9)	64	68.75	
Missing	102	70.59	
All	2663	67.71	

Table 13: Binary logistic regression Model 2a and Model 2b of the outcome 'applied for higher-level medical specialty training', significance of predictors (chi-squared statistic and p-value from likelihood ratio test, and model statistics. Blank cells denote variable not included in a model, n/s denotes non-significance.

	Model 2a		Model 2b (excludes doctors with a non-UK PMQ)			
Predictor	df	X ²	P-value	X ²	P-value	
Gender	1	n/s		n/s		
Intercalated	1	10.73	0.0011	14.36	0.0002	
Graduate on Entry	1	n/s				
Entry Status				n/s		
Medical School	33	49.83	0.0232	49.54	0.0186	
Foundation School	26	50.56	0.0027	49.00	0.0028	
CMT Deanery	15	n/s		n/s		
CMT Shortlisting score				5.13	0.0236	
CMT Interview score				4.35	0.0347	
		Model s	tatistics		•	
Minimum required sample size		216		24	6	
Actual sample size		255	6	2339		
Mean probability		0.675	53	0.67	746	
Standard Deviation	0.11			0.1	11	
95% CI	0.6576 - 0.6929			0.6562 to	0.6930	
Hosmer-Lemeshow test	X ² (8) = 6.39, p>0.05			X2 (8) = 6.72, p>0.05		
Area under ROC curve		0.64		0.65		

Table 14: Odds ratios (OR) and associated statistics for binary logistic regression of the outcome 'applied for
higher-level medical specialty training' (Model 2a, n = 2556).

Predictor	OR	S.E.	Z	P-value	959	% CI
Intercalated	1.5995	0.22294	3.28	0.001	1.2075	2.1186
Medi	cal School (r	reference c	ategory = no	n-UK medical schoo	ls	
Aberdeen	0.5956	0.2937	-1.05	0.2930	0.2266	1.5656
Barts	0.8448	0.3611	-0.39	0.6930	0.3656	1.9523
Birmingham	0.3636	0.1342	-2.74	0.0060	0.1763	0.7496
Brighton	0.7609	0.3656	-0.57	0.5700	0.2967	1.9515
Bristol	0.5601	0.2081	-1.56	0.1190	0.2704	1.1603
Cambridge	0.5328	0.1717	-1.95	0.0510	0.2832	1.0021
Cardiff	0.8501	0.3571	-0.39	0.6990	0.3732	1.9367
Dundee	0.2313	0.1279	-2.65	0.0080	0.0783	0.6837
Durham	0.7335	0.3809	-0.6	0.5510	0.2651	2.0298
Edinburgh	0.3273	0.1280	-2.86	0.0040	0.1520	0.7045
Glasgow	0.2433	0.1099	-3.13	0.0020	0.1004	0.5895
Hull York	0.6558	0.3265	-0.85	0.3970	0.2472	1.7398
Imperial	0.8352	0.2797	-0.54	0.5910	0.4332	1.6102
Keele	0.2368	0.1300	-2.62	0.0090	0.0808	0.6943
King's	0.4611	0.1685	-2.12	0.0340	0.2252	0.9439
Lancaster			Omitted a	Il positive outcomes	5	
Leeds	0.4925	0.2084	-1.67	0.0940	0.2149	1.1287
Leicester	0.4497	0.1878	-1.91	0.0560	0.1984	1.0195

Predictor	OR	S.E.	Z	P-value	95%	6 CI
Liverpool	0.5485	0.1905	-1.73	0.0840	0.2778	1.0833
Manchester	0.4178	0.1456	-2.5	0.0120	0.2111	0.8272
Newcastle	0.8282	0.3112	-0.5	0.6160	0.3966	1.7297
Norwich	0.8808	0.4259	-0.26	0.7930	0.3414	2.2722
Nottingham	0.7548	0.2851	-0.74	0.4560	0.3600	1.5824
Oxford	0.3772	0.1314	-2.8	0.0050	0.1906	0.7464
Peninsula	1.5910	0.8341	0.89	0.3760	0.5694	4.4453
Queen's	0.6283	0.3163	-0.92	0.3560	0.2342	1.6855
Sheffield	0.7193	0.3026	-0.78	0.4340	0.3154	1.6406
Southampton	0.5095	0.2024	-1.7	0.0900	0.2339	1.1100
St Andrews	0.5912	0.3201	-0.97	0.3320	0.2046	1.7084
St George's	0.7576	0.3163	-0.66	0.5060	0.3342	1.7174
Swansea	0.9824	0.8716	-0.02	0.9840	0.1726	5.5910
UCL	0.3888	0.1332	-2.76	0.0060	0.1987	0.7608
Warwick	0.6838	0.3126	-0.83	0.4060	0.2791	1.6753
Foundation Sc	hool Deaner	y (referenc	e category =	Black Country/Shro	opshire FS)	
Coventry and	0.2494	0.1512	-2.29	0.0220	0.0760	0.8183
Warwickshire						
East Anglian	0.3367	0.1893	-1.94	0.0530	0.1119	1.0133
Leicestershire, North	0.5063	0.3228	-1.07	0.2860	0.1452	1.7663
Mersey	0.4042	0.2268	-1.61	0.1060	0.1346	1.2138
North Central Thames	0.3547	0.1865	-1.97	0.0490	0.1265	0.9940
North East Thames	0.3207	0.1743	-2.09	0.0360	0.1105	0.9307
North West Thames	0.2826	0.1509	-2.37	0.0180	0.0992	0.8048
North Western	0.3777	0.2031	-1.81	0.0700	0.1316	1.0838
North Yorkshire East	0.2130	0.1283	-2.57	0.0100	0.0654	0.6938
Northern	0.3479	0.1973	-1.86	0.0630	0.1145	1.0572
Northern Ireland	0.1064	0.0853	-2.79	0.0050	0.0221	0.5125
Oxford	0.3211	0.1813	-2.01	0.0440	0.1062	0.9709
Peninsula	0.1502	0.0939	-3.03	0.0020	0.0441	0.5112
Scotland	0.5570	0.3276	-0.99	0.3200	0.1758	1.7642
Severn	0.3764	0.2119	-1.74	0.0830	0.1249	1.1346
South Thames	0.3301	0.1703	-2.15	0.0320	0.1201	0.9075
South Yorkshire	0.3733	0.2298	-1.6	0.1090	0.1117	1.2474
Trent	0.4582	0.2602	-1.37	0.1690	0.1505	1.3945
Wales	0.3506	0.2231	-1.65	0.1000	0.1007	1.2202
Wessex	0.2833	0.1621	-2.2	0.0270	0.0923	0.8693
West Midlands Central	0.4753	0.2398	-1.47	0.1400	0.1768	1.2776
West Midlands North	0.4241	0.2570	-1.42	0.1570	0.1293	1.3911
West Midlands South	0.6022	0.4189	-0.73	0.4660	0.1540	2.3542
West Yorkshire	0.4111	0.2499	-1.46	0.1440	0.1249	1.3532
UK PMQ/ no UK FS	0.1622	0.0821	-3.59	0.0000	0.0601	0.4374
Non-UK PMQ / no UK FS	0.2832	0.1853	-1.93	0.0540	0.0785	1.0212

Table 15: Percentage of doctors with successful completion of core anaesthesia training by medical school and foundation school attended.

Medical School	N	% Successfully	Foundation	Ν	% Successfully
	doctors	Completed	School	doctors	Completed
		Anaesthesia	Deanery		Anaesthesia
		Training			Training
Aberdeen	32	71.88	Black Country/Shropshire	23	60.87
Barts	70	68.57	Coventry and Warwickshire	19	84.21
Birmingham	96	85.42	East Anglian	54	75.93
Brighton	17	52.94	Leicestershire, North	25	80.00
Bristol	51	86.27	Mersey	70	78.57
Cambridge	58	87.93	North Central Thames	51	82.35
Cardiff	61	83.61	North East Thames	69	75.36
Dundee	29	68.97	North West Thames	49	79.59
Durham	26	76.92	North Western	88	79.55
Edinburgh	38	78.95	North Yorkshire East	17	94.12
Glasgow	45	60.00	Northern	65	89.23
Hull York	12	91.67	Northern Ireland	35	77.14
Imperial	59	84.75	Oxford	44	77.27
Keele	30	66.67	Peninsula	36	83.33
King's	82	78.05	Scotland	93	73.12
Lancaster	2	100.00	Severn	43	81.4
Leeds	62	74.19	South Thames	159	79.87
Leicester	44	72.73	South Yorkshire	23	86.96
Liverpool	83	84.34	Trent	51	74.51
Manchester	48	77.08	Wales	35	80.00
Newcastle	44	81.82	Wessex	14	85.71
Norwich	21	57.14	West Midlands Central	19	94.74
Nottingham	84	82.14	West Midlands North	71	80.28
Oxford	53	84.91	West Midlands South	45	80.00
Peninsula	36	75.00	West Yorkshire	56	82.14
Queen's	37	70.27	UK PMQ/ no UK FS	306	71.57
Sheffield	47	85.11	Non-UK PMQ / no UK FS	17	47.06
Southampton	45	73.33			
St Andrews	36	72.22			
St George's	69	85.51			
Swansea	17	58.82		1	
UCL	63	77.78			
Warwick	41	85.37			
*Non-UK medical school	39	56.41			
All	1577	77.74	All	1577	77.74

Table 16: Percentage of doctors who successful completed core anaesthesia training by HE Deanery where training took place.

Deanery	N	% Successfully
	students	completed
		anaesthesia training
HE East Midlands	64	68.75
HE East England	126	74.60
HE Kent, Surrey & Sussex	135	68.15
HE London NC & E	120	87.50
HE London NW	63	90.48
HE London S	81	92.59
HE North East	73	78.08
HE North West	201	76.62
HE South West	130	84.62
HE Thames Valley	35	71.43
HE Wessex	38	78.95
HE West Midlands	133	81.95
HE York & Humber	110	81.82
NHSE Scotland	109	68.81
Northern Ireland MTDA	449	67.35
Multiple HEs	5	100.00
Missing	105	67.62
All	1577	77.74

Table 17: Binary logistic regression Model 4a and Model 4b of the outcome 'successfully completed core anaesthesia training', significance of predictors (chi-squared statistic and p-value from likelihood ratio test, and model statistics. Blank cells denote variable not included in a model, n/s denotes non-significance.

		M	odel 4a	Model 4b		
Predictor	df	X ²	P-value	X ²	P-value	
Entry Status	2			18.22	0.0001	
Intercalated	1				n/s	
BME	1				n/s	
Graduate Entry	1	13.80	0.0002			
Gender	1	5.29	0.0215	5.48	0.0193	
First Medical School	32	49.90	0.0228		n/s	
Foundation School	26	52.40	0.0016	42.97	0.0141	
HE Deanery	14	41.37	0.0002	41.52	0.0000	
Anaesthesia Interview Score	1	13.89	0.0002	14.42	0.0000	
		Model s	tatistics			
Minimum required sample size		415		389		
Actual sample size	1464			133	38	
Mean probability		0.783	35	0.79	45	
Standard Deviation		0.147	' 5	0.14	52	
95% CI		0.7639 to	0.8032	0.7742 to 0.8147		
Hosmer-Lemeshow test		X ² (8) = 9.56	, p>0.05	X2 (8) = 17.	82, p>0.05	
Area under ROC curve		0.730)5	0.73	34	

OR S.E. P-value 95% CI Predictor z Gender 1.3817 0.19 2.30 0.0210 1.0489 1.8202 Graduate on entry 0.48 0.09 -3.72 0.0000 0.3265 0.7074 First Medical school (Reference group: non-UK medical schools) Aberdeen 2.4114 1.6632 1.2800 0.2020 0.6240 9.3188 Barts 2.0329 1.2045 1.2000 0.2310 0.6365 6.4929 Birmingham 3.7823 2.3899 2.1100 0.0350 1.0963 13.0496 **Brighton and Sussex** 1.0341 0.7753 0.0400 0.9640 0.2379 4.4955 4.3969 2.9250 2.2300 0.0260 1.1937 16.1959 Bristol Cambridge 5.6481 3.9702 2.4600 0.0140 1.4242 22.3997 Cardiff 2.1805 1.8489 0.9200 0.3580 0.4138 11.4901 Dundee 1.6773 1.1746 0.7400 0.4600 0.4251 6.6174 1.5332 0.5480 0.3807 6.1750 Durham 1.0898 0.6000 Edinburgh 3.3772 2.2719 1.8100 0.0700 0.9035 12.6236 1.2196 0.7886 0.3100 0.7590 0.3434 4.3311 Glasgow Hull York 4.9479 5.9782 1.3200 0.1860 0.4634 52.8290 3.7903 2.0300 0.0420 13.7331 Imperial 2.4896 1.0461 Keele 1.9960 1.4030 0.9800 0.3250 0.5034 7.9152 3.4611 2.0677 2.0800 0.0380 1.0732 11.1618 King's Omitted as all positive outcomes Lancaster 0.7000 Leeds 1.5427 0.9567 0.4840 0.4576 5.2016 Leicester 2.2890 1.6224 1.1700 0.2430 0.5706 9.1826 Liverpool 6.2874 3.8731 2.9800 0.0030 1.8799 21.0291 2.5464 1.6684 1.4300 0.1540 0.7050 9.1967 Manchester Newcastle 3.3315 2.2414 1.7900 0.0740 0.8912 12.4545 0.9646 0.6910 -0.0500 0.9600 0.2369 3.9279 Norwich Nottingham 4.6377 2.8832 2.4700 0.0140 1.3712 15.6853 1.7000 Oxford 3.0550 2.0118 0.0900 0.8403 11.1061 Peninsula 1.2995 0.8832 0.3900 0.7000 0.3429 4.9241 Queen's 2.6995 2.1487 1.2500 0.2120 0.5672 12.8469 Sheffield 4.2788 3.0408 2.0500 0.0410 1.0627 17.2284 1.8797 1.2667 0.9400 0.3490 7.0421 Southampton 0.5018 St Andrews 1.9827 1.3174 1.0300 0.3030 0.5391 7.2917 St George's 6.0623 3.8656 2.8300 0.0050 1.7373 21.1544 0.5781 0.5285 -0.6000 0.5490 0.0963 3.4694 Swansea UCL 1.6975 1.0212 0.8800 0.3790 0.5221 5.5190 Warwick 8.4134 6.4112 2.7900 0.0050 1.8895 37.4635 Foundation School (Reference Group: North Yorkshire East Coast) Black Country/Shropshire 0.0454 0.0568 -2.4700 0.0130 0.0039 0.5269 0.0650 0.0055 Coventry and 0.0805 0.1101 -1.8400 1.1730 Warwickshire East Anglian 0.1218 0.1429 -1.8000 0.0730 0.0122 1.2130 0.2558 0.3342 -1.0400 0.2970 0.0198 3.3108 Leicestershire, Northamptonshire 0.0796 0.0942 -2.1400 0.0078 0.8098 Mersey 0.0320 North Central Thames 0.1008 0.1189 -1.9500 0.0520 0.0100 1.0163 North East Thames 0.0812 0.0945 -2.1600 0.0310 0.0083 0.7946 0.0791 -2.2700 0.0230 0.0064 0.6890 North West Thames 0.0662 North Western 0.1463 0.1692 -1.6600 0.0970 0.0152 1.4119 Northern Foundation 0.5734 0.7006 -0.4600 0.6490 0.0523 6.2879 Northern Ireland 0.3518 0.4462 -0.8200 0.4100 0.0293 4.2258

Table 18: Odds ratios (OR) and associated statistics for binary logistic regression of the outcome 'applied for higher-level anaesthesia specialty training' (Model 4a, n = 1464).

Predictor	OR	S.E.	Z	P-value	95%	% CI	
Oxford	0.0755	0.0895	-2.1800	0.0290	0.0074	0.7705	
Peninsula	0.1172	0.1436	-1.7500	0.0800	0.0106	1.2947	
Scotland	0.2201	0.2580	-1.2900	0.1970	0.0221	2.1895	
Severn	0.1107	0.1330	-1.8300	0.0670	0.0105	1.1666	
South Thames	0.1131	0.1280	-1.9300	0.0540	0.0123	1.0401	
South Yorkshire	0.1803	0.2344	-1.3200	0.1880	0.0141	2.3035	
Trent	0.1384	0.1665	-1.6400	0.1000	0.0131	1.4629	
Wales	0.4542	0.6282	-0.5700	0.5680	0.0302	6.8315	
Wessex	0.1948	0.2380	-1.3400	0.1810	0.0178	2.1349	
W.Midlands Central	0.1031	0.1274	-1.8400	0.0660	0.0091	1.1623	
W.Midlands North	0.1868	0.2650	-1.1800	0.2370	0.0116	3.0107	
W.Midlands South	0.2823	0.4423	-0.8100	0.4200	0.0131	6.0898	
West Yorkshire	0.2162	0.2497	-1.3300	0.1850	0.0225	2.0788	
UKPMQ & missing FS	0.0606	0.0674	-2.5200	0.0120	0.0069	0.5361	
non-UKPMQ & missing FS	0.0924	0.1170	-1.8800	0.0600	0.0077	1.1064	
HE Deanery (Reference grou	up : LONDON	South)					
HE East Midlands	0.1212	0.0754	-3.3900	0.0010	0.0358	0.4101	
HE East England	0.2744	0.1428	-2.4800	0.0130	0.0989	0.7610	
HE Kent,Surrey,Sussex	0.1695	0.0821	-3.6600	0.0000	0.0656	0.4382	
HE London NC&E	0.5629	0.3020	-1.0700	0.2840	0.1966	1.6112	
HE London NW	0.6856	0.4335	-0.6000	0.5510	0.1985	2.3677	
HE North East	0.1609	0.0999	-2.9400	0.0030	0.0477	0.5432	
HE North West	0.2346	0.1240	-2.7400	0.0060	0.0833	0.6609	
HE South West	0.2798	0.1523	-2.3400	0.0190	0.0962	0.8132	
HE Thames Valley	0.1861	0.1157	-2.7000	0.0070	0.0550	0.6293	
HE Wessex	0.1296	0.0864	-3.0600	0.0020	0.0351	0.4789	
HE West Midland	0.2985	0.1711	-2.1100	0.0350	0.0970	0.9180	
HE York Humber	0.2559	0.1512	-2.3100	0.0210	0.0804	0.8146	
NHSE Scotalnd	0.0728	0.0443	-4.3100	0.0000	0.0221	0.2398	
Northern Ireland MTDA	0.1030	0.0781	-3.0000	0.0030	0.0233	0.4551	
Multiple	Omitted as	all positiv	e outcomes	•	•		
Anaesthesia Interview Score	1.0176	0.004	3.73	0.0000	1.0083	1.0270	

Table 19: Typologies derived from logistic regression model 4a, of the predicted probability of the outcome 'successful completion of anaesthesia training' computed for combinations of values on the predictors gender, graduate on entry and whether attended a UK medical school or not, holding all other predictors in the model at their means (n=1464) mean predicted probability = 0.7835).

UK medical			Predicted		
school	Entry status	Gender	probability	95% CI	
	Non graduate	Male	0.62	0.45	0.78
NO	Non- graduate	Female	0.54	0.37	0.71
NO	Graduate	Male	00.44	0.24	0.63
	Graduate		0.36	0.18	0.54
	Non graduato	Male	0.86	0.84	0.89
YES	Non- graduate	Female	0.62 0.45 0.54 0.37 00.44 0.24 0.36 0.18 0.86 0.84 0.82 0.79 0.75 0.69	0.85	
163	Graduate	Male	0.75	0.69	0.82
	Graduate	Female	0.69	0.61	0.76

Table 20: Odds ratios (OR) and associated statistics for binary logistic regression of the outcome 'successful completion of anaesthesia training' (Model 4b, n = 1338).

Predictor	OR	S.E.	Z	P-value	95%	% CI			
Gender	1.4161	0.2138	2.3000	0.0210	1.0534	1.9037			
Entry Status (reference grou	ıp: non-gradı	uate entrai	nts to Standa	rd Entry Programm	es (SEP)				
Graduate entrants SEP	0.5351	0.1443	-2.3200	0.0200	0.3154	0.9079			
Graduate Programmes	0.3241	0.0966	-3.7800	0.0000	0.1807	0.5812			
Foundation School (Reference group : North Central Thames)									
Black Country/Shropshire	0.0736	0.0932	-2.0600	0.0390	0.0061	0.8819			
Coventry and	0.1149	0.1590	-1.5600	0.1180	0.0076	1.7300			
Warwickshire									
East Anglian	0.1846	0.2232	-1.4000	0.1620	0.0173	1.9736			
Leicestershire,	0.3679	0.4926	-0.7500	0.4550	0.0267	5.0736			
Northamptonshire									
Mersey	0.0991	0.1207	-1.9000	0.0580	0.0091	1.0780			
North East Thames	0.1647	0.1978	-1.5000	0.1330	0.0156	1.7348			
North West Thames	0.1051	0.1244	-1.9000	0.0570	0.0103	1.0693			
North Western	0.0934	0.1137	-1.9500	0.0520	0.0086	1.0160			
Northern Foundation	0.2130	0.2534	-1.3000	0.1940	0.0207	2.1929			
Northern Ireland	0.8348	1.0616	-0.1400	0.8870	0.0691	10.0922			
Oxford	0.4490	0.5801	-0.6200	0.5350	0.0357	5.6486			
Peninsula	0.0921	0.1114	-1.9700	0.0490	0.0086	0.9861			
Scotland	0.2867	0.3681	-0.9700	0.3310	0.0231	3.5515			
Severn	0.2909	0.3470	-1.0400	0.3010	0.0281	3.0135			
South Thames	0.2078	0.2582	-1.2600	0.2060	0.0182	2.3723			
South Yorkshire	0.1447	0.1670	-1.6800	0.0940	0.0151	1.3890			
Trent	0.2534	0.3341	-1.0400	0.2980	0.0191	3.3578			
Wales	0.2159	0.2675	-1.2400	0.2160	0.0190	2.4473			
Wessex	0.4785	0.6698	-0.5300	0.5990	0.0308	7.4375			
W.Midlands Central	0.2164	0.2716	-1.2200	0.2230	0.0185	2.5317			
W.Midlands North	0.1788	0.2272	-1.3500	0.1750	0.0148	2.1570			
W.Midlands South	0.2364	0.3408	-1.0000	0.3170	0.0140	3.9888			
West Yorkshire	0.4462	0.7095	-0.5100	0.6120	0.0198	10.0686			
UKPMQ & missing FS	0.2844	0.3361	-1.0600	0.2870	0.0281	2.8829			
HE Deanery (Reference grou									
HE East Midlands	0.0928	0.0667	-3.3100	0.0010	0.0227	0.3799			
HE East England	0.2180	0.1343	-2.4700	0.0130	0.0652	0.7290			
HE Kent, Surrey, Sussex	0.1197	0.0682	-3.7200	0.0000	0.0391	0.3659			
HE London NC&E	0.4156	0.2578	-1.4200	0.1570	0.1232	1.4016			
HE London NW	0.4729	0.3455	-1.0300	0.3050	0.1130	1.9796			
HE London S	0.1571	0.1136	-2.5600	0.0100	0.0381	0.6479			
HE North East	0.1668	0.1041	-2.8700	0.0040	0.0491	0.5671			
HE North West	0.1774	0.1122	-2.7400	0.0060	0.0514	0.6125			
HE South West	0.1399	0.1019	-2.7000	0.0070	0.0335	0.5835			
HE Wessex	0.0743	0.0552	-3.5000	0.0000	0.0173	0.3189			
HE West Midland	0.2323	0.1536	-2.2100	0.0270	0.0635	0.8490			
HE York Humber	0.1800	0.1228	-2.5100	0.0120	0.0472	0.6858			
NHSE Scotland	0.0456	0.0315	-4.4700	0.0000	0.0117	0.1767			
Northern Ireland MTDA	0.0587	0.0489	-3.4100	0.0010	0.0115	0.3001			
Multiple	Omitted as	all positiv	e outcomes						
Interview Score	1.0195	0.0053	3.7300	0.0000	1.0092	1.0299			

Table 21: Typologies derived from logistic regression model 4b, of the predicted probability of the outcome 'successful completion of anaesthesia training' computed for combinations of values on the predictors gender, and entry status, holding all other predictors in the model at their means (n=1338) mean predicted probability = 0.79).

Gender	Entry Status	Probability	bability 95% Confidence Inte	
Non-graduate Standard Entry Programme		0.83	0.80	0.87
Female	Graduate Standard Entry Programme	0.73	0.63	0.83
	Non-graduate Standard Entry Programme	0.62	0.49	0.75
	Non-graduate Standard Entry Programme	0.88	0.85	0.90
Male	Graduate Standard Entry Programme	0.79	0.71	0.88
	Male Graduate Standard Entry Programme	0.70	0.58	0.81

Table 22: Sociodemographic and educational background descriptive statistics of the UKMED sample of doctors who had successfully completed their core anaesthesia training (n=858) and who had been accepted on to the programme during the years 2013 and 2014. Results of bivariate tests of association with the outcome 'applied for higher-level anaesthesia specialty training' (Pearson's Chi squared test, logistic regression as appropriate) with associated statistics and significance. For a full list of UKMED data types, descriptions and sources refer to the UKMED Data Dictionary available at <u>http://www.ukmed.ac.uk/documents/UKMED data dictionary.pdf</u>

				% Applied	
				higher-level	
				training	
			% of	medical	Bivariate
Factor	Category	N doctors	sample	specialty	Association
	Female	412	48.02	72.09	
Gender	Male	446	51.98	76.01	n/s
		858	100.00		11/5
Age on entry to	<=20 years	649	75.64	73.81	
medical school	>20 years	195	22.73	73.33	
	Not stated/missing	14	1.63	100.00	n/s
		858	100.00		
Black and Minority	BME	166	19.35	73.77	
Ethnic	White	676	78.79	75.30	
(BME) status	Not stated/missing	16	1.86	93.75	n/s
		858	100.00		
SEC	Higher managerial & professional	344	40.09	74.42	
(NS-SEC 1-7)	Lower managerial & professional	196	22.84	73.47	
Socioeconomic class	Intermediate occupations	76	8.86	73.68	
of the parent if under	Small employer own account	24	2.80	79.17	
21 years of age.	Lower supervisory & technical	14	1.63	71.43	
	Semi-routine occupations	43	5.01	65.12	n/s
	Routine occupations	12	1.40	66.67	
	Not stated/missing	149	17.37	77.18	
		858	100.00		
Index of Multiple	Quintile 1	286	33.33	74.83	
Deprivation (IMD) a	Quintile 2	192	22.38	80.73	n/s
quintile ranking of	Quintile 3	124	14.45	69.35	

				0/ Applied	
				% Applied	
				higher-level	
			% of	training medical	Bivariate
Factor	Category	N doctors	sample	specialty	Association
IMD zone within	Quintile 4	85	9.91	75.29	Association
country of UK	Quintile 5	32	3.73	75.00	-
students' domicile	Not stated/missing	139	16.20	66.91	-
		858	100.00	00.51	-
POLAR2 (quintile	Quintile 1	29	3.38	75.86	
classification of areas	Quintile 2	68	7.93	75.00	
for young persons'	Quintile 3	118	13.75	69.49	
participation rates in	Quintile 4	165	19.23	75.76	-
higher education	Quintile 5	419	48.83	74.70	n/s
based on students'	Not stated/missing	59	6.88	72.88	173
UK postcode		858	100.00		
Dischility	Disabled	0	0.02	62.50	
Disability	Disabled	8	0.93	6250	x2 (2) = C 57
-	No disability Not stated/missing	833 17	97.09	73.71	×2 (2) = 6.57 P<0.05
-	Not stated/missing		1.98	100.00	P<0.05
UK educated	1	858 636	100.00 74.13	72.48	
1= Yes: completed	2			68.42	
both secondary	3	38	4.43	08.42	
education &	4				-
undergraduate	4 Not stated/missing	184	21.45	80.98	
medical degree in the	Not stated/missing	858	100.00	60.96	
UK		020	100.00		
2=No: completed					
secondary education					
in the UK and					
undergraduate					
medical degree					
outside UK					
3= No: completed					
secondary education					^x 2 (2) = 6.04
outside the UK and					P<0.05
undergraduate					
medical degree in UK					
4= No: completed					
both secondary education and					
undergraduate					
medical degree					
outside UK					
UK secondary school	Yes	636	74.13	72.48	
education	No	38	4.43	68.42	1
Recode of UK	Not stated/missing	184	21.45	80.98	×2 (2) = 6.04
educated (1&2=1,		858	100.00	30.50	P<0.05
3&4=0)					
Secondary school	Privately funded	244	28.44	77.46	
type attended	State funded	542	63.17	72.69] ,
	Not stated/missing	72	8.39	73.61	n/s
	-	858	100.00		
Income support	Yes	64	7.46	70.31	x2 (2) = 2 :
Whether the doctor's	No	508	59.21	71.46	×2 (2) = 7.04
household received	Not stated/missing	286	33.33	79.72	P<0.05

Factor	Category	N doctors	% of sample	% Applied higher-level training medical specialty	Bivariate Association
Income Support at		858	100.00	-1	
any point during their school years					
Free school meals	Yes	33	3.85	75.76	
Whether doctor had	No	557	64.92	71.99	n/s
free school meals	Not stated/missing	268	31.24	78.36]
		858	100.00		
Parent Degree	Yes	432	50.335	71.30	-
Whether the doctor's	No	186	21.68	73.66	-
parent(s) or guardian	Not stated/missing	240	27.93	79.58	n/s
(s) completed a university degree course or equivalent.		858	100.00		
Graduate On Entry	Graduate	158	18.41	73.42	
	Non-graduate	700	81.59	74.29	1
	Not stated/missing	, 30	01.55	,	n/s
		858	100.00		
Programme	Standard Entry Programme	717	83.57	73.50	
Derived from	Graduate Entry Programme	99	11.54	75.76	
COURSE_TYPE	Foundation Course	2	00.23	50.00	
1= Standard Entry	Medicine With a Gateway (Preliminary) Year	11	1.28	72.73	
Programme	Science Top-up Programme				n/s
2=Graduate Entry	Not stated/missing	29	3.38	86.21	1,5
Programme 3= Medicine With Gateway/Preliminary Year Programme		858	100.00		
Medical school Entry Status	Non-graduate entrant to Standard Entry Programme	656	76.46	74.09	
	Graduate entrant to Standard Entry Programme	61	7.11	67.21	n/s
	Entrant to Graduate Entry Programme	92	10.72	78.26	
	Not stated/missing	49	5.71	75.51]
		858	100.0		
Age at entry to	Age<21 years	649	75.64	73.81	
medical	Age>=21 years	195	22.73	73.33	n/s
	Not stated/missing	14	1.63	100.00	
Parent(s) had higher	Yes	107	112.47	71.03	
education	No	30	3.50	60.00]
qualifications	Not stated/missing	721	84.03	75.17	n/s
		858	100.00		
IDACI quintile	1	119	13.87	70.59	
	2	128	14.92	76.56	4
	3	124	14.45	75.81	4
	4	126	14.69	74.60	n/s
	5	1141	16.43	75.18	{
	Not stated/missing	220	25.64	72.73	4
First modical ash a -!	Soo Toblo 2 for dataila	858	100.00		x2 (22)
First medical school	See Table 2 for details				×2 (33) =

			% of	% Applied higher-level training medical	Bivariate
Factor	Category	N doctors	sample	specialty	Association
Factor	Category	IN UDCLOIS	Sample	specialty	P<0.05
Foundation School	See Table 2 for details				×2 (26) =
Deanery	Not stated/missing				40.36
Deanery	Not stated/missing				P<0.05
Health Education	See Table 3 for details				×2 (16) =
Training Deanery	Not stated/missing				42.59
					P<0.001
Intercalated	Yes	161	18.76	70.81	
	No	697	81.24	74.89	
	Not stated/missing				n/s
	, ,	858	100.00		
Educational	34	24	2.80	46.67	
Performance	36	43	5.01	55.81	10 (1)
Measure Quartile	38	68	7.93	72.06	×2 (4) =
	40	82	9.56	64.63	29.73
	Not stated/missing	641	74.71	78.00	P<0.001
	· •	858	100.00		
UK Primary Medical	Yes	844	98.37	73.70	
Qualification	No	14	1.63	100.00	^x 2 (1) = 4.98
	Not stated/missing				P<0.05
		858	100.00		
	Continuous variables		Mean (SD)	Min - Max	Regression
Total UCAS tariff f	or all HESA Tariff included qualifications	n=641	479 103.66)	60 to 890	n/s
UKCAT Total score		n=149	2559.27 (226.53)	1790 - 3170	n/s
Age	on entry to medical school	n=844	19.67 (3.12)	17 to 43	n/s
Ana	esthesia Shortlisting score	missing			
	aesthesia Interview score	n= 857	150.93 (21.09)	101 to 251	n/s

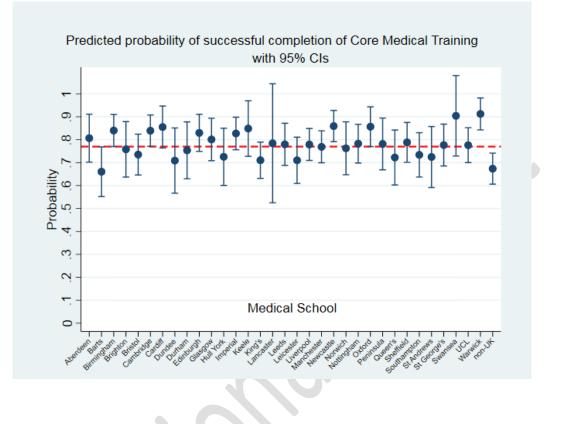
Table 23: Binary logistic regression Model 5b of the outcome 'applied for higher-level anaesthesia specialty training', significance of predictors (chi-squared statistic and p-value from likelihood ratio test, and model statistics. Blank cells denote variable not included in a model, n/s denotes non-significance.

		Model 5b		
Predictor	df	X ²	P-value	
Foundation School Deanery	25		n/s	
Anaesthesia Deanery	15	31.90	0.0067	
Minimum required sample size	76			
Actual sample size	801			
Mean probability	0.7398			
Standard Deviation	0.15			
95% CI	0.7111 – 0.7685			
Area under ROC curve	0.69			

Table 24: Percentage of doctors who applied or higher-level anaesthesia specialty training by medical school and foundation school attended.

	N	%	Foundation School	N	%
Medical School	Doctors	Applied	Deanery	doctors	Applied
Aberdeen	22	77.27	Black Country/Shropshire	10	70.00
Barts	36	72.22	Coventry and Warwickshire	9	88.89
Birmingham	56	75.00	East Anglian	24	70.83
Brighton	6	50.00	Leicestershire, North	11	90.91
Bristol	33	60.61	Mersey	39	84.62
Cambridge	34	82.35	North Central Thames	32	78.13
Cardiff	33	81.82	North East Thames	43	76.74
Dundee	16	75.00	North West Thames	30	76.67
Durham	11	36.36	North Western	54	70.37
Edinburgh	25	68.00	North Yorkshire East	12	75.00
Glasgow	23	65.22	Northern	43	53.49
Hull York	6	66.67	Northern Ireland	25	92.00
Imperial	39	82.05	Oxford	24	62.50
Keele	14	57.14	Peninsula	21	76.19
King's	42	83.33	Scotland	60	73.33
Lancaster	2	100.00	Severn	28	64.29
Leeds	33	69.70	South Thames	97	77.32
Leicester	17	64.71	South Yorkshire	19	63.16
Liverpool	44	86.36	Trent	26	80.77
Manchester	28	60.71	Wales	19	73.68
Newcastle	24	58.33	Wessex	7	71.43
Norwich	11	81.82	West Midlands Central	17	52.94
Nottingham	45	73.33	West Midlands North	42	69.05
Oxford	30	70.00	West Midlands South	29	65.52
Peninsula	15	60.00	West Yorkshire	33	63.64
Queen's	24	87.50	UK PMQ/ no UK FS	100	85.00
Sheffield	30	80.00	Non-UK PMQ / no UK FS	4	100.00
Southampton	24	54.17			
St Andrews	19	73.68			
St George's	39	82.05			
Swansea	7	57.14			
UCL	32	81.25			
Warwick	24	87.50			
*Non-UK medical school	14	100.00			
All	858	74.13	All	858	74.13

	N		
Anaesthesia Deanery	students	% Applied	
HE East Midlands	29	72.41	
HE East England	67	82.09	
HE Kent, Surrey & Sussex	54	79.63	
HE London NC & E	74	83.78	
HE London NW	37	62.16	
HE London S	50	78.00	
HE North East	38	60.53	
HE North West	104	80.77	
HE South West	70	55.71	
HE Thames Valley	17	82.35	
HE Wessex	21	85.71	
HE West Midlands	76	72.37	
HE York & Humber	68	61.76	
NHSE Scotland	75	72.00	
Northern Ireland MTDA	32	93.75	
Multiple (+ London n=9)	3	66.67	1
Missing	43	74.42	
All	858	74.13]


Table 25: Percentage of doctors who applied or higher-level anaesthesia specialty training by HE deanery where training took place.

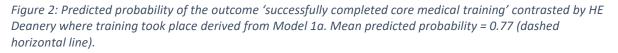

Predictor	OR	S.E.	Z	P-value	95% CI		
HE Anaesthesia Deanery (reference category = HE South West)							
HE East Midlands	1.0496	0.7809	0.0700	0.9480	0.2442	4.5116	
HE East England	6.6886	3.3618	3.7800	0.0000	2.4975	17.9129	
HE Kent, Surrey & Sussex	3.8900	1.9407	2.7200	0.0060	1.4631	10.3423	
HE London NC & E	5.6285	2.7638	3.5200	0.0000	2.1499	14.7356	
HE London NW	1.6237	0.7939	0.9900	0.3220	0.6228	4.2334	
HE London S	3.5783	1.7915	2.5500	0.0110	1.3413	9.5463	
HE North East	2.9114	1.8124	1.7200	0.0860	0.8594	9.8625	
HE North West	4.0419	2.1031	2.6800	0.0070	1.4578	11.2068	
HE Thames Valley	7.0028	5.2601	2.5900	0.0100	1.6066	30.5243	
HE Wessex	6.5452	5.0277	2.4500	0.0140	1.4524	29.4969	
HE West Midlands	2.9047	1.4134	2.1900	0.0280	1.1192	7.5385	
HE York & Humber	1.5824	0.7993	0.9100	0.3640	0.5880	4.2587	
NHSE Scotland	1.9108	1.0655	1.1600	0.2460	0.6405	5.7001	
Northern Ireland MTDA	11.8841	17.5093	1.6800	0.0930	0.6620	213.3400	
Multiple (+ London n=9)	3.8177	5.0594	1.0100	0.3120	0.2843	51.2687	

Table 26: Odds ratios (OR) and associated statistics for binary logistic regression of the outcome 'applied for higher-level anaesthesia specialty training' (Model 5b, n = 801).

9 Figures

Figure 1: Predicted probability of the outcome 'successfully completed core medical training' contrasted by medical school attended derived from Model 1a. Mean predicted probability = 0.77 (dashed horizontal line).

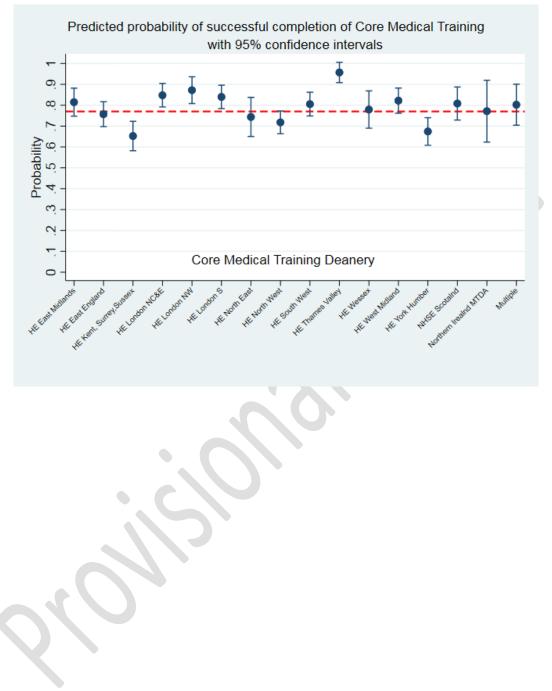


Figure 3: Predicted probability of the outcome 'successful completion of core medical training' contrasted by UK versus non-UK medical school, by graduate and non-graduate entry, adjusted by core medical training short-listing score, derived from Model 1a.

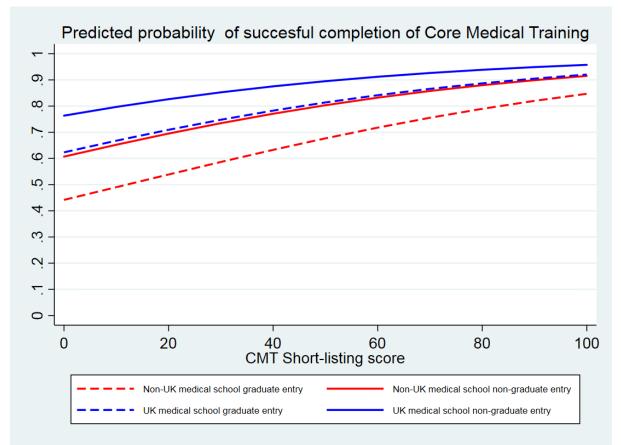
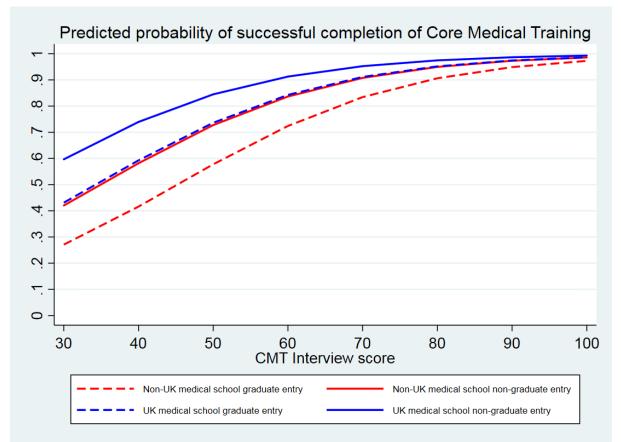
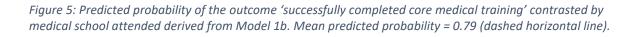
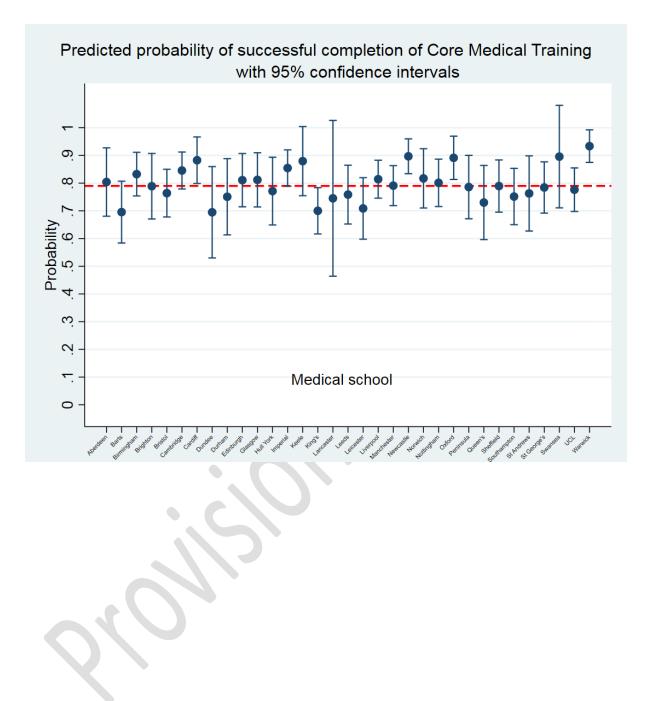
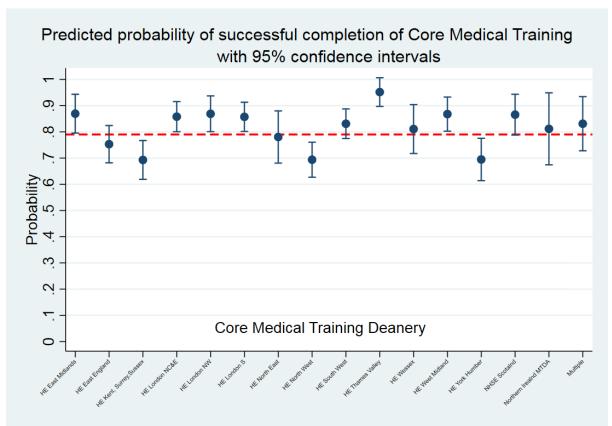






Figure 4: Predicted probability of the outcome 'successful completion of core medical training' contrasted by UK versus non-UK medical school, by graduate and non-graduate entry, adjusted by core medical training interview score, derived from Model 1a.

Figure 6: Predicted probability of the outcome 'successfully completed core medical training' contrasted by HE Deanery where training took place derived from Model 1b. Mean predicted probability = 0.79 (dashed horizontal line).

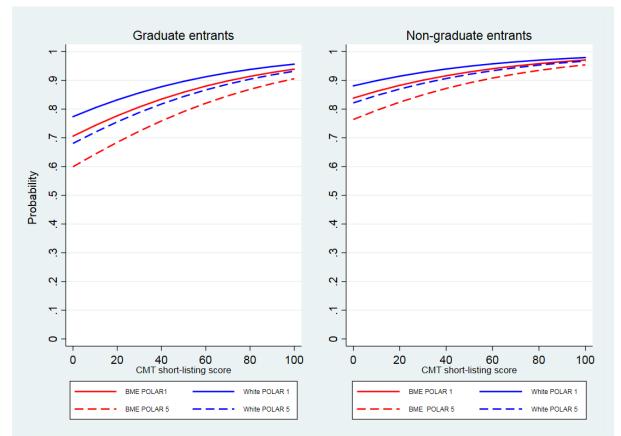


Figure 7: Predicted probability of the outcome 'successful completion of core medical training' contrasted by graduate and non-graduate entry, BME, and POLAR quintile 1 versus POLAR quintile 5, adjusted by core medical training short-listing score, derived from Model 1b.

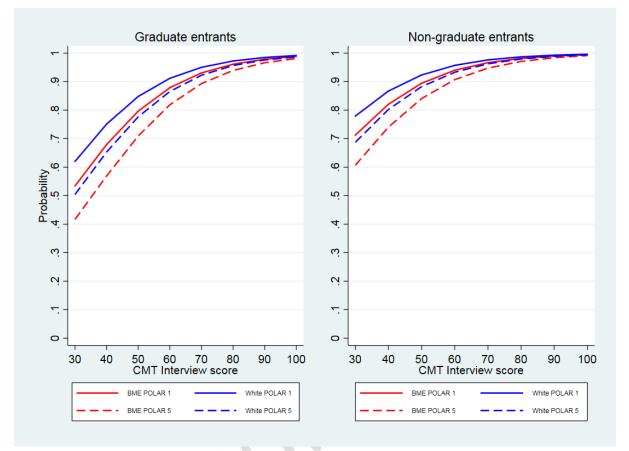
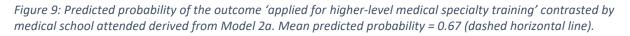
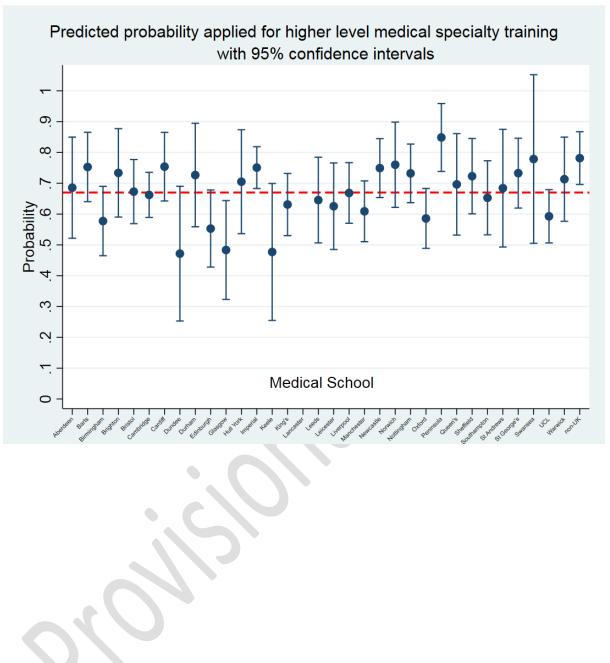
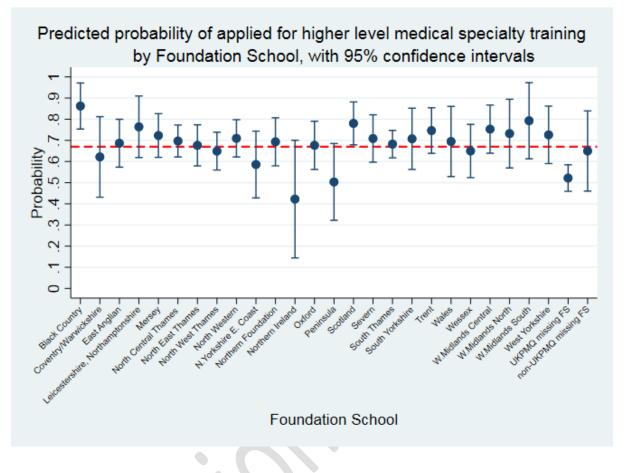





Figure 8: Predicted probability of the outcome 'successful completion of core medical training' contrasted by graduate and non-graduate entry, BME, and POLAR quintile 1 versus POLAR quintile 5, adjusted by core medical training interview score, derived from Model 1b.

Figure 10: Predicted probability of the outcome 'applied for higher-level medical specialty training' contrasted by foundation school deanery attended derived from Model 2a. Mean predicted probability = 0.67 (dashed horizontal line).

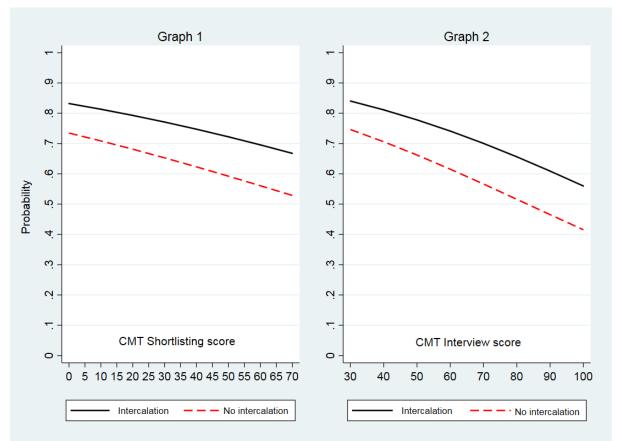
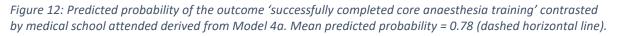
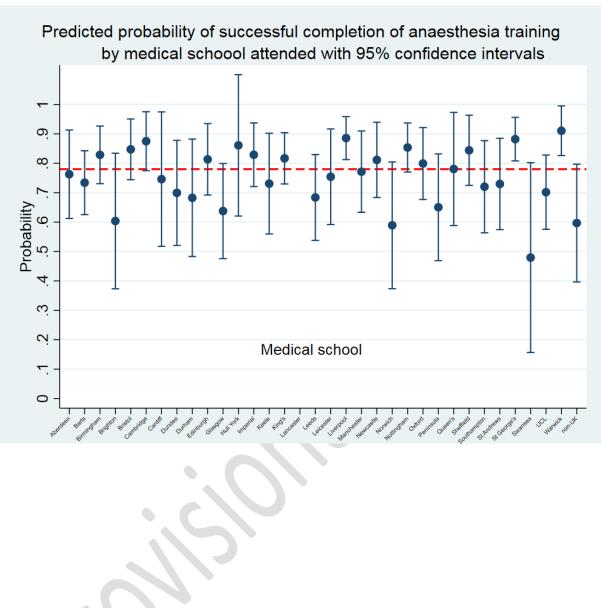
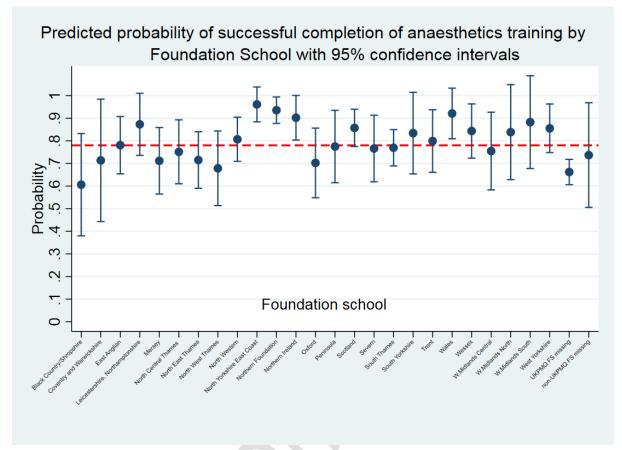





Figure 11: Predicted probability of the outcome 'applied for higher-level medical specialty training' contrasted by whether doctor intercalated at medical school or nor, adjusted by CMT shortlisting score (Graph 1) and adjusted by CMT interview score (Graph 2) derived from Model 2b.

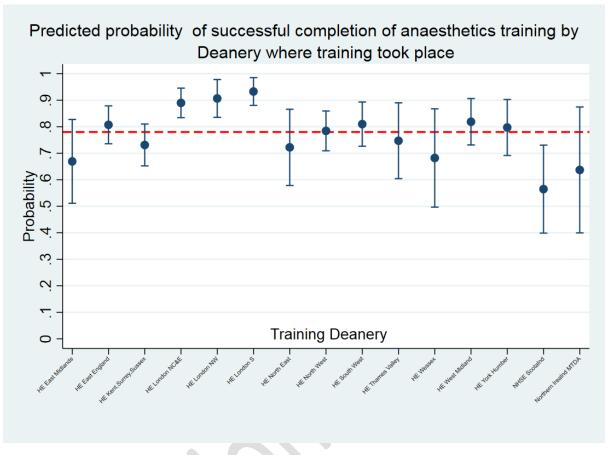


Figure 13: Predicted probability of the outcome 'successfully completed core anaesthesia training' contrasted by foundation school attended derived from Model 4a. Mean predicted probability = 0.78 (dashed horizontal line).

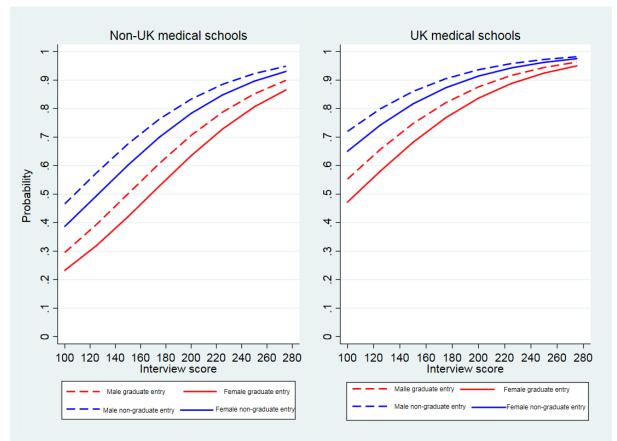
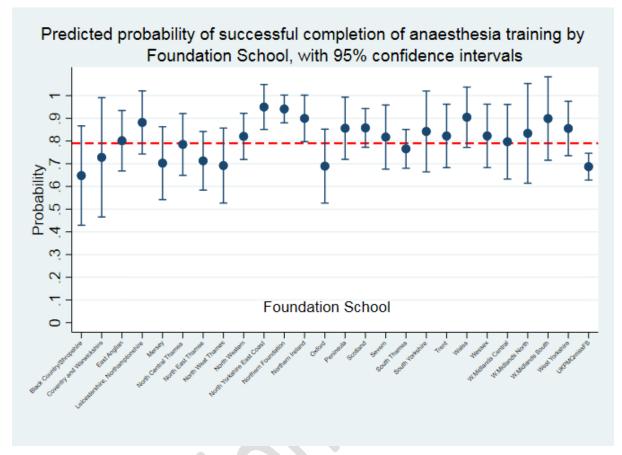



Figure 15: Predicted probability of successful completion of anaesthesia training contrasted by UK versus non-UK medical school, graduate and non-graduate entry, and gender, adjusted by interview score derived from model 4a. *Figure 16: Predicted probability of the outcome 'successfully completed core anaesthesia training' contrasted by foundation school attended derived from Model 4b. Mean predicted probability = 0.79 (dashed horizontal line).*

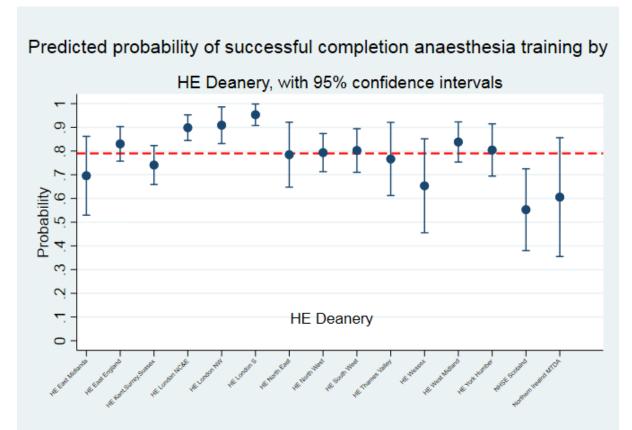
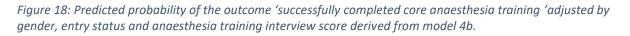
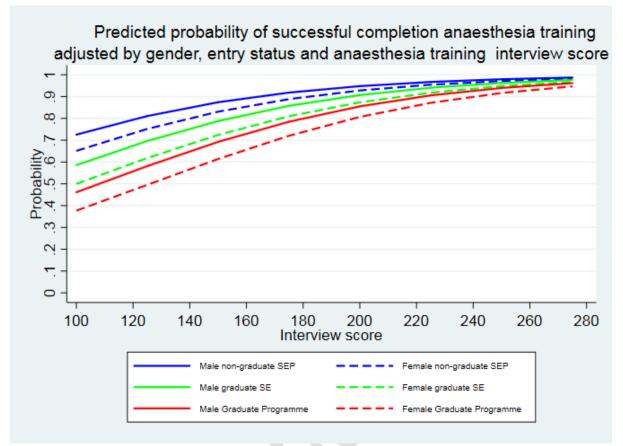
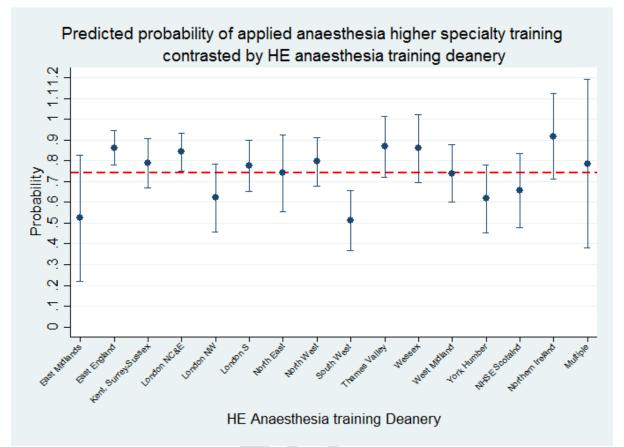





Figure 17: Predicted probability of the outcome 'successfully completed core anaesthesia training' contrasted by HE deanery attended for training derived from Model 4b. Mean predicted probability = 0.79 (dashed horizontal line).

Figure 19: Predicted probability of the outcome 'applied higher-level anaesthesia specialty training' contrasted by HE Deanery where training took place derived from Model 5a. Mean predicted probability = 0.76 (dashed horizontal line).

10 Limitations

The UKMED data set provided a finite window for the follow-up of doctors entering core medical and anaesthesia training so there is likely some bias in both stages of our analysis due to censoring in the data.

- Despite our curtailment of the entry point to the years 2012 to 2014 it is possible that some of the trainees who had not completed their training by July 2017 may yet do so. The number of such trainees would be very small however: of the 917 doctors who entered core medical training in 2012 and had completed by 2017 only 19 (2.1%) took more than three years to do so. The corresponding number among the 365 who entered core anaesthesia training in 2012 was 6 (1.6%). The potential bias in the 'completion of training' analyses due to censoring is therefore small and it was felt preferable to accept this rather than to drastically reduce the sample sizes by curtailing the entry point to the years 2012 and 2013 only.
- The effect of censoring on our analyses of application to higher specialty training is probably greater, particularly in anaesthesia where doctors appear more likely than their medical counterparts to take some time out after completion of core training before applying to higher training. Of those completing their core training in 2015 for example, 24.7% of the anaesthesia trainees who applied to higher level training waited until 2017 before doing so. The corresponding proportion among those completing core medical training in 2015 was just 3.5%. Our analysis of factors associated with application to higher level training in anaesthesia is therefore limited; both by censoring and by the additional curtailment of the sample size due to missing application data (see 3.1 above). The results (Tables 22 to 26) must therefore be treated with some caution.

Missing data may also have biased our analyses though it is impossible to quantify the extent of this. Our decision not to impute missing data, explained in Section 3.2 above, led to a reduction in the size of the analytic samples but these were still much bigger than the minimum requirements for conducting the logistic regressions.

11 Conclusions and further research

There is a significant amount of attrition of the numbers of doctors who enter core training in medicine or anaesthesia, with those completing training and subsequently applying for higher level training posts in those specialties. 2633/3720 (71%) trainees completed core medical training of whom 68% applied to higher level training in medicine. Attrition was lower in anaesthetics where 1226/1577 (78%) trainees completed core training of whom 74% applied to ST3 posts in anaesthesia.

Common educational factors which predicted completion of core training in both medicine and anaesthesia were; graduate versus non-graduate entry to medical school, medical school attended and training Deanery attended. The odds of successful completion of core training for graduate entrants to medical school programmes were 0.5 times the odds of non-graduate entrants for both medicine and anaesthesia. Part-time training was associated with lower odds of completing training for medicine but not anaesthesia, although numbers of trainees who undertook part-time training were low (3% for both medicine and anaesthesia). Foundation school attended, significantly predicted completion of training in anaesthesia but not medicine.

There were differences in the socio-demographic factors associated with completion of training for medicine and anaesthesia. The odds of successful completion of core medical training for BME doctors were 0.7 times those of white doctors, and higher for doctors who at entry to medical school had lived in areas of the lowest rate of young persons' participation in Higher Education (POLAR 1). For anaesthesia, the only socio-demographic factor associated with completion of core training was gender with the odds for males completing core training 1.4 times that of females.

Selection processes to core training in medicine and anaesthesia work well in predicting those trainees that will complete the core training programme. There were strong associations between interview score and likelihood of successful completion of training in medicine and anaesthetics. Shortlisting score was also strongly predictive of likelihood of completing training in core medicine but the UKMED database contained a significant amount of missing data for shortlisting scores in anaesthetics. Although shortlisting and interview scores predicted successful completion of core medical training, these scores had an inverse relationship with the odds of applying to higher training in medicine suggesting that stronger candidates at the selection process were less likely to apply directly to higher medical specialties. This picture did not occur in anaesthetics where interview score had no association with the likelihood of applying to ST3 posts in anaesthesia. For trainees who had completed core medical training, those who had intercalated during medical school were more likely to apply and there were significant associations between medical school and foundation school attended. For anaesthesia, the only factor associated with the odds of applying for ST3 posts after completion of core training, was the HE training deanery attended. For those applicants who were offered posts to higher training in medicine and

anaesthetics, none of the socio-demographic or educational factors investigated were associated with decisions to accept these posts.

We have identified common educational factors which are associated with failure to complete core training in medicine and anaesthetics and further work is needed to understand why graduate entrants to medical school, for instance, are less likely to complete their core training, as well as why there are socio-demographic differences based on ethnicity and gender. Research is needed to investigate why certain profiles of trainees are less likely to complete their training in order to help target strategies to which may help these trainees. We have highlighted factors associated with decisions to apply (or not) to higher training once core training is completed and further studies are required to follow-up those trainees who do not directly enter higher training in order to understand choices made at this stage of training.

12 Acknowledgements

We would like to thank Daniel Smith (General Medical Council) for support with data linkage and troubleshooting throughout the project and the Health Informatics Centre support team at University of Dundee. We would also like to thank Stephen Harding and Dr David Black (Royal College of Physicians) for assistance with identifying data available for different cohorts of trainees and for defining the 25 relevant cognate medical specialties for higher specialty training in medicine. The study was part funded by a grant from Health Education England for £13,764.

13 References

- 1. Royal College of Anaesthetists (2016). Workforce data pack. Accessed online, 29th Jan 2017, available at: http://www.rcoa.ac.uk/system/files/TRG-WorkforceDataPack2016.pdf
- Centre for Workforce Intelligence (2015). In depth review of the acute medical care workforce. Accessed online, 29th Jan 2017, available at: <u>http://www.cfwi.org.uk/publications/in-depth-review-of-the-acute-medical-care-workforce</u>
- Centre for Workforce Intelligence (2015). In depth review of the anaesthetics and intensive care medicine workforce. Accessed online, 29th Jan 2017, available at: <u>http://www.cfwi.org.uk/publications/in-depth-review-of-the-anaesthetics-and-intensive-caremedicine-workforce</u>
- 4. Patterson F, Knight A, Dowell J, Nicholson S, Cousans F, Cleland J. (2016) How effective are selection methods in medical education? A systematic review. Medical Education 50(1):36-60.
- 5. Stegers-Jager KM, Themmen APN, Cohen-Schotanus J and Steyerberg EW. (2015) Predicting performance: relative importance of students' background and past performance. Medical Education 49(9): 933–45.
- 6. Zhou R, Montealegre JR, Amirian ES, Scheurer ME. Reply to limitations in the imputation strategy to handle missing nativity data in the Surveillance, Epidemiology, and End Results program. *Cancer* 2014;120(20):3262-63.
- 7. Pinheiro PS, Bungum TJ, Jin H. Limitations in the imputation strategy to handle missing nativity data in the Surveillance, Epidemiology, and End Results program. *Cancer* 2014;120(20):3261-62.
- 8. Mackinnon A. The use and reporting of multiple imputation in medical research a review. *J. Intern. Med.* 2010;268(6):586-93.
- 9. Hosmer DW, Jr., Lemeshow S, Sturdivant RX. *Applied Logistic Regression*. 3rd ed. Hoboken, New Jersey: Wiley, 2013.
- 10. Long JS, Freese J. *Regression models for categorical dependent variables using Stata*. 3rd ed. College Station, Texas: Stata Corp LP, 2014.
- 11. Zhou X-H, Obuchowski NA, McClish DK. *Statistical methods in diagnostic medicine*. New York: Wiley, 2002.
- 12. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. *J. Clin. Epidemiol.* 1996;49(12):1373-79.